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Motivation
- Starting with Jordà (2005), local projections (LP) have become a common tool tounderstanding the dynamic effects of economic shocks

* An alternative to vector autorregresions (VARs) when estimating impulse responses
- Other studies analyze the performance of these two models when estimating IRFs

* VARs and LPs estimate the same impulse responses in population (Plagborg-Møller and Wolf, 2020)
* However, there is a bias-variance trade off in finite samples (Li et al., 2021)

- Our focus is instead on the structural parameters of any DSGE model
* Follow Smith (1993) in estimating structural parameters through an indirect inference exercise inwhich the auxiliary model is a macro-econometric model

- How should we choose between VARs and LPs when estimating – via indirect inference – thestructural parameters of our DSGE model?
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What I Do: Monte-Carlo Analysis
- Data Generating Process → Smets & Wouters (2007) DSGE model (different sample lenghts)
- Estimation technique → minimum distance

* Indirect Inference: estimating IRFs on model simulated data
* IRF matching: analytical IRFs from ABCD representation

- Moment generating / binding functions → IRF estimators
* Vector Autoregression (VARs)

* Local Projections (LP)

* Bias correction and various lag length also considered
- Shocks & Identification

* Three shocks: technology, fiscal and monetary
* Three identifications: recursive, observed and noisily measured shocks
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What I Find
- Observed shock case

* IRF matching → LP responses (low bias)
* Indirect Inference → robust to misspecification → SVAR responses (low variance)
* However, the lag length p used in LP and VAR estimators matters a lot

- If p is small, then use LP for IRF matching, while use VAR for Ind. Inf.
- As p gets large, bias shrinks for VAR but at the cost of higher variance (Olea et al., 2024)
- Hence, when p is large, the LP and SVAR have similar performance

* Ind. Inf. is robust to small sample bias in estimated responses, IRF matching benefits from biascorrection
- Recursive identification & shock proxies

* When recursive assumptions are incorrect, IRF matching struggles but Ind. Inf. is robust to it
* Both estimation techniques and econometric estimators suffer from miss-measured shocks
* Unit normalization seems to be a good fix to deal with it
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DATA GENERATING PROCESS
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The Model Economy
- The discussion about which binding function to use, VAR or LP, is best made in the context ofa specific model, but which model to use?

- Many applications that estimate their economies by matching impulse responses concern
linearized models, e.g. Rotemberg and Woodford (1998), Christiano et al. (2005), Iaccoviello(2005), etc.

* Indirect inference was initially proposed as a method to estimate non-linear models
* Nonetheless we still need to understand how to choose the binding function in this simpler set up

- The responses to monetary, fiscal and technology shocks are the most widely studied inempirical applications (Ramey, 2016). Hence, we want a model that is able to speak about theresponses to these aggregate shocks
- Given the relevance in the academic literature and in policy circles, the Smets and Wouters

(2007) model seems a sensible choice
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Smets and Wotuers Model – Main Ingredients I
- Representative household with habit formation and preference for leisure

ct = c1ct−1 + (1 − c1)Et [ct+1] + c2 (lt − Et [lt+1])− c3

(
rt − Et [πt+1]− εb

t

)
- Households invest in capital given the capital adjustment cost they face

it = i1it−1 + (1 − i1)E[it+1] + i2qt + εi
t

where
qt = q1E[qt+1] + (1 − q1)Erk

t+1 −
(

rt − Et [πt+1]− εb
t

)
: value of capital

kt = k1kt−1 + (1 − k1)it + k2εi
t : installed capital LoM

- Aggregate production uses installed capital (ks
t = kt−1 + zt ) and labor services

yt = ϕp (αks
t + (1 − α)lt + εa

t )
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Smets and Wotuers Model – Main Ingredients II
- Price stickiness as in Calvo (1983) and partial indexation to lagged inflation gives rise toNew-Keynesian Phillips curve

πt = π1πt−1 + π2E[πt+1]− π3µp
t + εp

t

- Nominal wage stickiness and partial indexation of wages to inflation
wt = w1wt−1 + (1 − w1)E[wt+1 + πt+1]− w2πt + w3πt−1 − w4µw

t + εw
t

- Government spending is exogenous and correlated with technology
ε
g
t = ρgε

g
t−1 + η

g
t + ρgaηa

t

- The central bank sets the short-term interest rate according to the monetary policy rule

rt =ρr rt−1 + (1 − ρr )
(
rππt + ry

(
yt − yp

t
))

+ r∆y

[(
yt − yp

t
)
−

(
yt−1 − yp

t−1

)]
+ ϵr

t

8 / 38



ESTIMATION STRATEGY
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Indirect Inference / Impulse Response Matching
- When estimating a subset of the structural parameters Θ of any DSGE model bymatching impulse responses, there are two approaches:

* Target empirical responses but match model impulse responses
J irf = min

Θ
(β − IRF(Θ))′ W (β − IRF(Θ)) (1)

- It doesn’t require a simulated dataset, only structural IRFs
* Target and match empirical responses

Jsmm = min
Θ

(β − β(Θ))′ W (β − β(Θ)) (2)
- It uses the same econometric approach in the real and simulated data

- How does the choice of the econometric model affects parameter estimates?
* J irf speaks about potential misspecification of the model economy
* Jsmm relates to misspecification of both the model and the binding function
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MONTE-CARLO EXPERIMENTS
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The DGP & the hyper-parameters
- The log-linearized version of the Smets and Wouters (2007) model is used to generate S repeated

samples of macroeconomic aggregates
- The model is simulated each time at the estimated values from their paper using a sample of T

observations
* T = 300 used as baseline
* T = 100 to address the issue of small sample bias of LPs (Herbst & Johannsen, 2023)

- We concentrate in 8 structural parameters of the model:
* σc : intertemporal elasticity of substitution
* h : habit parameter
* σl : elasticity of labor supply

* φ : investment adjustment cost parameter
* ξw , ξp : Calvo adjustment probabilities
* ιw , ιp : Degree of indexation to past inflation

- Simulated series are 10 times larger than the sample size during the optimization stage
- The importance of the coefficients used to summarize the data is weighted by a squared matrix W

* Identity matrix: Im
* Inverse of the VCM of the moments: Ω−1

* Diagonal matrix with 1/h elements: Id
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Targeted Responses
- We focus on the estimated impulse responses of four variables: output, consumption,

investment and hours worked to one of three main aggregate shocks: monetary policy, fiscal
policy and technology

- Shocks are treated by the econometrician as
* observed, i.e. x̃t = ηi

t* inferred via recursive ordering
* observed with error, i.e. x̃t = ηi

t + σννt

- The IRFs are estimated using a VAR or a Local Projections.
* If the sample size is small (T = 100), we also consider the bias-corrected LP (Herbst & Johannsen,2023) or the procedure by Killian (1998) for the SVAR

- In either case, the econometrician still needs to decide on at least two more things:
* The impulse response horizon, H . We set H = 20.
* The number of lags, p. We experiment with various p’s, i.e. p ∈ {2,4,8,12}.

▷ LP - IRFs ▷ SVAR - IRFs 13 / 38



PERFORMANCE METRICS
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How to asses the performance of the estimation?
- Overall performance

J∗ =
(IRF(Θ∗)− IRF(Θ̂)

)′ (IRF(Θ∗)− IRF(Θ̂)
) (3)

Jsmm =
(

β(Θ∗)− β(Θ̂)
)′ (

β(Θ∗)− β(Θ̂)
) (4)

J irf =
(

β(Θ∗)− IRF(Θ̂)
)′ (

β(Θ∗)− IRF(Θ̂)
) (5)

- Parameter-by-parameter performance

Lω(Θ̂i ,Θ∗
i ) = ω ×

(
E
[
Θ̂i

]
− Θ∗

i
)2︸ ︷︷ ︸bias

+ (1 − ω)× Var(Θ̂i)︸ ︷︷ ︸variance
(6)

- Model fit
* Similar to (3), compute the unweighted distance between the structural IRFs but to othernon-targeted shocks in the economy
* For example, if targeting monetary policy shocks, look at fiscal and technology
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MONTE-CARLO RESULTS

(OBSERVED SHOCK)
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Targeted Impulse Responses (S=100, T=300, p=4)
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IRF matching vs. Indirect Inference
- Simplifying assumptions for comparison:

* Target IRFs estimated with a LP or SVAR model and T = 300 observations
* Weight all responses equally during the estimation stage, i.e. W = I

- Overall performance measures are averaged across estimations using different laglengths (p ∈ {2,4,8,12}) and shocks (TFP, fiscal, monetary)
IRF matching Indirect Inference

Jirf J∗ Time J∗
unt Jsmm J∗ Time J∗

unt

Local Projection 35.10 0.27 3.49 min 18.70 32.54 0.39 42.88 min 17.91
Structural VAR 35.23 0.41 3.93 min 17.93 33.87 0.33 14.47 min 18.39

▷ Lag Length ▷ Sample Size ▷ Weighting Matrix
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Parameter by parameter performance

z =
(
Lω(Θ̂LP

i ,Θ∗
i )−Lω(Θ̂SVAR

i ,Θ∗
i )
)

/Θ∗
i
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MONTE-CARLO RESULTS

(RECURSIVE IDENTIFICATION)
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Cholesky Orthogonalized Shocks
- Shocks are not observable in applied work. Thus, there is a need for identification

- The most commonly used identification method in macroeconomics imposes recursive zero
restrictions on contemporaneous coefficients

- As shown by Ramey (2016), there are two widely used alternatives:
* Policy variable does not respond within the period to the other endogenous variable

- We use this assumption to identify technology shocks and government spending shocks within theSmets and Wouters model
- TFP and government spending are the policy variables, ordered first. Output, consumption, investment

and hours worked are included in the VAR or as lagged controls in the LP
* Other endogenous variables do not respond to the policy shock within the period

- We use this assumption to identify monetary policy shocks within the Smets and Wouters model
- We order the policy rate last in a VAR that also includes output, consumption, investment, hours worked,

wages, and inflation. Similarly, these variables are added as contemporaneous controls in the LP
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TECHNOLOGY SHOCKS
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Recursive assumption is correct in Sm & Wo (2007)
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If assumptions are right, identification does not matter
- If recursive assumptions are correct, the identification strategy does not play a role inthe estimation
- Main lesson still holds: use LPs for IRF matching exercises and VARs for Ind. Inf.

- Model fit: J∗
unt is large =⇒ not great idea to target just TFP shocks in theSmets-Wouters model

IRF matching Indirect Inference
Jirf J∗ Time J∗

unt Jsmm J∗ Time J∗
unt

Local Projection 1.05 0.67 2.87 min 37.30 0.70 0.84 42.41 min 35.92
Structural VAR 2.53 1.07 3.11 min 35.74 0.97 0.66 14.34 min 37.31
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It is all about the investment adjustment cost φ̂

z =
(
Lω(Θ̂LP

i ,Θ∗
i )−Lω(Θ̂SVAR

i ,Θ∗
i )
)

/Θ∗
i
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MONETARY POLICY SHOCKS
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Real variables respond at t = 0 in the Sm & Wo model
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Overall performance
- Main results still hold when targeting IRFs to monetary policy shock and it is a better idea inthe Smets-Wouters world: lower J∗

unt

- When identification assumption are incorrect, then Ind. Inf. is robust to such misspecification
* Targeting consistently wrong responses helps with parameter identification as long as they havelow variance

IRF matching Indirect Inference
Jirf J∗ Time J∗

unt Jsmm J∗ Time J∗
unt

Observed Shock
Local Projection 50.65 0.07 3.46 min 9.36 48.46 0.31 41.39 min 9.40
Structural VAR 54.07 0.11 4.38 min 9.26 53.60 0.30 14.65 min 9.44

Recursive Shock
Local Projection 48.11 0.29 3.34 min 9.60 56.91 0.18 78.57 min 9.34
Structural VAR 47.09 0.34 3.78 min 9.31 58.70 0.12 11.44 min 9.34
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Parameter by parameter performance

z =
(
Lω(Θ̂LP

i ,Θ∗
i )−Lω(Θ̂SVAR

i ,Θ∗
i )
)

/Θ∗
i
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MONTE-CARLO RESULTS

(MEASUREMENT ERROR)
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Direct measures of the shock of interest
- A popular identification approach consist of constructing a series from historicaldocuments to identify policy shocks, e.g.

* Romer and Romer (2004) monetary shock series based on FOCM meetings
* Ramey (2011) defense news series based on Business Week articles

- These series are used in dynamic single equation regressions or embedded in aCholeski decomposition, as we have done for the observed shock scheme
- In practice, there are good reasons to expect that these shocks suffer from

measurement error or capture only part of the shock. Hence, I distinguish 3 cases:
1. Study classical measurement error case, ηobs

t = ηt + σννt

2. Proxy is correlated with other shocks, e.g. government spending with technology shock
3. Unit normalization (Stock & Watson, 2018)
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Attenuation bias in IRFs
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Proxy shocks: bad news for the structural estimates
- The estimation outcome is significantly worse for both LPs and VARs as well as for the IRF

matching and Ind. Inf. estimators relative to the observed shock case.
- These findings also apply to other sources of variation such as monetary or fiscal policy shocks.
- Does it get worse when the proxy is correlated with other shocks? Does unit normalization ofthe IRFs help in identifying responses?

IRF matching Indirect Inference
Jirf J∗ Time J∗

unt Jsmm J∗ Time J∗
unt

True technology shock (ηa
t )

Local Projection 1.05 0.67 2.87 min 37.30 0.70 0.84 42.41 min 35.92
Structural VAR 2.53 1.07 3.11 min 35.74 0.97 0.66 14.34 min 37.31

Proxied technology shock (ηa,obs
t = ηa

t + σννt )
Local Projection 1.79 1.25 3.05 min 34.30 1.35 1.40 40.23 min 33.31
Structural VAR 3.41 1.70 2.80 min 33.47 1.70 1.18 13.74 min 34.39
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Govn’t spending and its correlation with technology
- The J∗ is again much larger than in the observed shock case or in the proxy measure withclassical measurement error, and for both estimation approaches.

* Ind. Inf. is not robust to this type of misspecification, unlike for (misspecified) recursive shocks
- The model fit, J∗

unt , improves in the IRF matching because the IRF with the shock (not just theinnovation) captures some information about technology shocks.
IRF matching Indirect Inference

Jirf J∗ Time J∗
unt Jsmm J∗ Time J∗

unt

Government spending innovation (ηg
t )

Local Projection 53.59 0.07 4.14 min 9.43 48.45 0.02 44.82 min 8.40
Structural VAR 49.09 0.05 4.32 min 8.79 47.03 0.03 14.42 min 8.42

A correlated government spending proxy (εg,obs
t )

Local Projection 30.82 0.34 4.09 min 7.80 39.05 0.35 46.13 min 10.15
Structural VAR 31.45 0.34 4.19 min 7.78 42.42 0.40 14.20 min 10.53
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Stock & Watson unit normalization
- Unit normalization corrects the bias in estimated responses through rescaling.
- Great fix for the structural estimation as well, specially for IRF matching.

IRF matching Indirect Inference
Jirf J∗ Time J∗

unt Jsmm J∗ Time J∗
unt

True Monetary policy shock (ηm
t )

Local Projection 50.65 0.07 3.46 min 9.36 48.46 0.31 41.39 min 9.40
Structural VAR 54.07 0.11 4.38 min 9.26 53.60 0.30 14.65 min 9.44

Proxied monetary policy shock (ηa,obs
t = ηa

t + σννt )
Local Projection 1.79 1.25 3.05 min 34.30 1.35 1.40 40.23 min 33.31
Structural VAR 3.41 1.70 2.80 min 33.47 1.70 1.18 13.74 min 34.39

A 1% increase in r0 (Stock and Watson (2018) normalization)
Local Projection 50.77 0.08 3.83 min 19.34 49.49 0.52 49.84 min 17.85
Structural VAR 53.41 0.32 4.04 min 18.86 51.23 0.42 12.49 min 17.93
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CONCLUSION
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5 Main Lessons
1. IRF matching is more sensitive to bias in targeted responses and hence using LP-IRFs is preferable, while

Ind. Inf. is robust to misspecification and hence benefits from the lower variance of VAR-IRFs.
2. When the lag length p is large, then IRFs and estimated parameters are similar independently of theeconometric model. On the other hand, when p is small, LP-IRFs are less biased and hence better for

IRF matching, while SVAR-IRFs have a larger bias but lower variance and hence better for Ind. Inf.

3. Small sample bias worsens the performance of the estimation specially for IRF matching when biascorrection partly offsets the problem.
4. Incorrect recursive identifications are not an issue for parameter estimation when employing Ind. Inf..Not true for IRF matching.
5. Measurement error worsens the structural estimation outcome and unit normalization only amelioratesthe problem.
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APPENDIX
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Local Projections (LP - IRFs)
- Some notation:

* Let ỹt ∈ {yt , ct , it ,hwt} denote one of response variables of interest.
* Let x̃t ∈ {ηa

t , η
g
t , ηm

t } denote the innovation of one of the three aggregate shocks.
* Define the vector of contemporaneous rt and lagged controls wt = {x̃t , ỹt}

- Then, consider for each horizon h = 0,1,2, . . . ,H the linear projections:
ỹt+h = µh + βhx̃t + γ′

hrt +
p

∑
ℓ=1

δ′h,ℓwt−ℓ + ξh,t (7)
where ξh,t is the projection residual and µh, βh,γh, {δ′h,ℓ}

p
ℓ=1 are the projection coefficients.

- Definition. The LP - IRFs of ỹt with respect to x̃t is given by {βh}h≥0 in the equation above.
▷ Back
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Structural Vector Autoregression (SVAR - IRFs)
- Consider the multivariate linear VAR(p) projection:

wt = c +
p

∑
ℓ=1

Aℓwt−ℓ + ut (8)
where ut is the projection residual and c, {Aℓ}

p
ℓ=1 are the projection coefficients.

- Let Σu ≡ E [ut u′
t ] and define the Cholesky decomposition Σu = BB′ where B is lower triangular withpositive diagonal entries.

- Consider the corresponding recursive SVAR representation:
A(L)wt = c + Bη (9)

where A(L) = I − ∑p
ℓ=1 AℓLℓ and η = B−1ut . Define the lag polynomial ∑p

ℓ=0 CℓLℓ = C(L) = A(L)−1.
- Definition. The SVAR - IRFs of ỹt with respect to x̃t is given by {θh}h≥0 with θh ≡ C2,•,hB•,1 where {Cℓ} and

B are defined above.
▷ Back
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HYPER-PARAMETER CHOICES:
LAG LENGTH
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Does the lag length matter for the IRFs?

- Point estimates

* Local Projection IRFs are independent ofthe lag length when the shock is observed
* SVAR IRFs approximately agree with LPIRFs up to horizon p, then extrapolatesusing the first p sample autocovariances

- Confidence Intervals

* Local Projection IRFs have a much widerbands, specially at long horizons
* SVAR IRFs converge towards the sampleuncertainty of LPs as p gets large
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Decomposition by lag length
IRF matching Indirect Inference

Jirf J∗ Time J∗
unt Jsmm J∗ Time J∗

unt

p=2
Local Projection 35.75 0.24 3.30 min 18.97 25.47 0.34 18.93 min 18.02
Structural VAR 34.61 0.61 4.32 min 17.00 26.25 0.16 11.88 min 19.32

p=4
Local Projection 35.68 0.25 3.40 min 18.74 30.26 0.37 28.99 min 17.95
Structural VAR 36.01 0.39 3.89 min 17.75 31.49 0.26 15.35 min 18.26

p=8
Local Projection 34.69 0.28 3.83 min 18.47 35.91 0.44 45.06 min 17.69
Structural VAR 34.92 0.34 3.85 min 18.36 37.26 0.49 13.35 min 18.01

p=12
Local Projection 34.27 0.29 3.44 min 18.63 38.52 0.41 78.53 min 17.98
Structural VAR 35.39 0.30 3.67 min 18.61 40.47 0.41 17.29 min 17.98

▷ Back
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HYPER-PARAMETER CHOICES:
SAMPLE SIZE
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Small sample bias & bias correction
- P-M & W (2023) show that LP(p) exactly agree withtrue responses and that SVAR(p) agrees up to lag p

- However, sample uncertainty matters!
* In finite samples, e.g. T = 300, both LP and SVAR arebiased after horizon p, with SVARs having a moresevere bias as long as the response is persistent
* The sample size typically found in empirical applications

is even shorter and around T=100 (H&J, 2023), which
makes these biases worse.

- Bias correction partially offsets the small sample bias,but two questions arise in our context
* Q1: Does Indirect Inference improves upon IRFmatching when this bias is severe?
* Q2: Does targeting bias corrected responses improve

the model estimation?

▷ Back
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IRF matching vs. Indirect Inference in small samples
- Higher sample uncertainty associated with fewer observations (T = 100) leads to a worse fit of themodel for both estimation strategies
- IRF matching suffers more its consequences as Ind. Inf. is robust to misspecification of the bindingfunction
- For the same reason, applying bias correction to the targeted IRFs is more useful for IRF matching

IRF matching Indirect Inference

Jirf J∗ Time J∗
unt Jsmm J∗ Time J∗

unt

T=300
Local Projection 35.10 0.27 3.49 min 18.70 32.54 0.39 42.88 min 17.91
Structural VAR 35.23 0.41 3.93 min 17.93 33.87 0.33 14.47 min 18.39

T=100
Local Projection 29.71 0.53 3.56 min 18.13 22.00 0.46 18.46 min 19.03
Structural VAR 31.62 0.47 3.33 min 17.98 25.16 0.36 9.78 min 19.50

Bias Corrected LP 31.55 0.32 3.26 min 19.18 23.29 0.35 20.48 min 19.50
Bias Corrected SVAR 33.48 0.32 3.42 min 18.65 26.06 0.33 11.02 min 20.11

▷ Back
8 / 10



HYPER-PARAMETER CHOICES:
WEIGHTING MATRIX
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The role of the weighting matrix
IRF matching Indirect Inference

Jirf J∗ Time J∗
unt Jsmm J∗ Time J∗

unt

Identity Matrix
Local Projection 35.10 0.27 3.49 min 18.70 32.54 0.39 42.88 min 17.91
Structural VAR 35.23 0.41 3.93 min 17.93 33.87 0.33 14.47 min 18.39

Diagonal Matrix
Local Projection 34.44 0.22 3.61 min 18.87 32.82 0.35 40.56 min 18.22
Structural VAR 34.87 0.27 3.85 min 18.20 34.17 0.31 11.55 min 18.62

Optimal Weighting Matrix
Local Projection 33.63 0.04 3.07 min 21.56 32.69 0.06 35.56 min 21.41
Structural VAR 34.17 0.05 3.20 min 20.80 34.26 0.08 10.69 min 20.90

▷ Back
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