Durables, Portfolio Choice & Aggregate Uncertainty Progress Summary

Juan Castellanos Silván

European University Institute

Russell Cooper

European University Institute

Sebastian Rast
European University Institute

June 11, 2021

BORROWING CONSTRAINS \Longrightarrow highlighting the triple role of durable goods

- No borrowing
- Collateral constrain, i.e. down-payment
- Endogenous borrowing constraints

THREE ASSET ECONOMY \implies bonds, stocks and durables

- Study the real effects of Monetary Policy

AGGREAGATE UNCERTAINTY

- Does individual non-linearities translate to the aggregate?

GENERAL EQUILIBRIUM

- Aiyagari (1994, QJE) ightarrow SIM + Infinite Horizon \checkmark
- Hugget (1996, JME) ightarrow SIM + Lifecycle \checkmark
- Krueger & Fernandez-Villaverde (2011, Macro Dynamics) \rightarrow Hugget + Durables

PARTIAL EQUILIBRIUM

- Druedahl (2020, CE) ightarrow Durables + Discrete Choice + Micro Frictions \checkmark
- Berger & Vavra (2015, Ecta) \rightarrow Druedahl + Down-payment + Aggregate Uncertainty

Literature Review

DURABLE GOODS

Borrowing Constraints

- Luengo-Pardo (2006, JME)
- Krueger & Fernandez-Villaverde (2011, Macro Dynamics)

Monetary Policy

- Sterk & Tenreyro (2018, JME)
- McKay & Wieland (2021, R&R Ecta)
- McKay & Wieland (2021, R&R AER: Insights)

Aggregate Demand

- Berger & Vavra (2015, Ecta)
- Harmenberg & Öberg (2021, JME)

Other Assets

- Paz-Pardo (2020, WP ECB)

Literature Review II

SOLUTION METHODS

For the household problem

- Fella (2014, RED)
- Iskhakov et al. (2017, QE)
- Druedahl & Jørgensen (2017, JEDC)
- Druedahl (2020, CE)

For aggregate uncertainty

- Ampudia et al. (2020, ECB WP) \rightarrow data consistent approach
- Fernandez-Villaverde et al. (2020, WP) ightarrow approximate PLM w/ a NN

PARTIAL EQUILIBRIUM

A. THE MODEL

A Consumption-Savings Model with Durable Goods

States

- m_t : cash-on-hand
- n_t : stock of durable good
- p_t : persistent component of income

Controls

- c_t : non-durable consumption
- d_t : durable consumption

Preferences

$$u(c_t, d_t) = \frac{\left(c_t^{\alpha} \left(d_t + \underline{d}\right)^{1-\alpha}\right)^{1-\rho}}{1-\rho}, \ \alpha \in (0, 1), \ \rho > 0$$

Budget Constraint

$$a_t = \begin{cases} m_t - c_t & \text{if } d_t = n_t \\ x_t - c_t & \text{if } d_t \neq n_t \end{cases}$$

with $x_t = m_t + (1 - \tau)n_t$

Transition equations

$$m_{t+1} = Ra_t + y_{t+1}$$

 $n_{t+1} = (1 - \delta)d_t$

Stochastic Income Process

$$\begin{split} p_{t+1} &= \psi_{t+1} p_t^{\lambda}, \quad \log \psi_{t+1} \sim \mathcal{N}\left(-0.5\sigma_{\psi}^2, \sigma_{\psi}^2\right), \ \lambda \in (0, 1] \\ y_{t+1} &= \xi_{t+1} p_{t+1}, \quad \log \xi_{t+1} \sim \mathcal{N}\left(-0.5\sigma_{\xi}^2, \sigma_{\xi}^2\right) \end{split}$$

Consumption-Savings Model w/ Durables II

$$\begin{aligned} v_t\left(m_t, n_t, p_t\right) &= \max\left\{v_t^{keep}\left(m_t, n_t, p_t\right), v_t^{adj}\left(x_t, p_t\right)\right\} \\ \text{s.t.} \quad x_t &= m_t + (1-\tau)n_t \end{aligned}$$

where

$$\begin{aligned} v_t^{keep} \left(m_t, n_t, p_t \right) &= \max_{c_t} u \left(c_t, n_t \right) + \beta \mathbb{E}_t \left[v_{t+1} \left(m_{t+1}, n_{t+1}, p_{t+1} \right) \right] \\ \text{s.t.} \quad a_t &= m_t - c_t \geq \overline{b}_t (n_t, p_t) \\ m_{t+1} &= Ra_t + y_{t+1} \\ n_{t+1} &= (1 - \delta) n_t \end{aligned}$$

and

$$\begin{aligned} v_t^{adj}\left(x_t, p_t\right) &= \max_{c_t, d_t} u\left(c_t, d_t\right) + \beta \mathbb{E}_t\left[v_{t+1}\left(m_{t+1}, n_{t+1}, p_{t+1}\right)\right] \\ \text{s.t.} \quad a_t &= x_t - c_t - d_t \geq \overline{b}_t(n_t, p_t) \\ m_{t+1} &= Ra_t + y_{t+1} \\ n_{t+1} &= (1 - \delta)d_t \end{aligned}$$

Borrrowing Limits

1. Ad-hoc borrowing constraints \implies No borrowing \checkmark

$$\bar{b}_t(n_t, p_t) = 0$$

2. Collateral constraints \implies Fixed down payment \checkmark

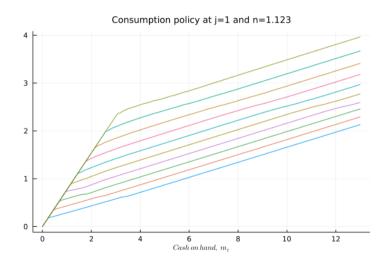
$$\bar{b}_t(n_t, p_t) = -(1-\theta)n_t$$

3. Endogenous borrowing constraint à la Krueger & Fernandez-Villaverde

$$\bar{b}_t(n_t, p_t) := \{b^* \in \mathbb{R} : v_{t+1}(b^*, n_{t+1}, p_{t+1}) \ge v_{t+1}(y_{t+1}, 0, p_{t+1}) \quad \forall p_{t+1}\}$$

B. PARAMETRIZATION

Calibration: standard values for now


Parameter	Value	Description	Target
β	0.965	Discount factor	TBD
ρ	2.0	Relative risk aversion	TBD
α	0.90	Non-durable consumption share	TBD
au	0.10	Proportional adjustment cost	TBD
δ	0.15	Durable good's depreciation rate	TBD
heta	1.00	Down payment requirement	TBD
R	1.03	Real interest rate	TBD
λ	1.00	Persistence of income	TBD
σ_{ψ}	0.10	SD of permanent shock	TBD
$\sigma_{\xi}^{'}$	0.10	SD of transitory shock	TBD

C. Household's Decision Rules

No Borrowing: Keeper Problem

No Borrowing: Adjuster Problem (36 years)

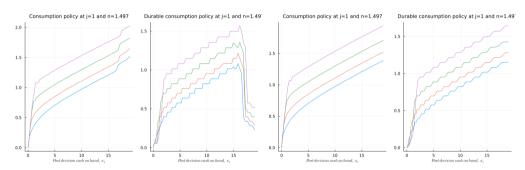


Figure: Adjuster policy functions based on coarse grid, J=36. LHS is nvfi, RHS vfi

The role of adjustment costs: Adjuster Problem (36 years) FILLEROPEAN

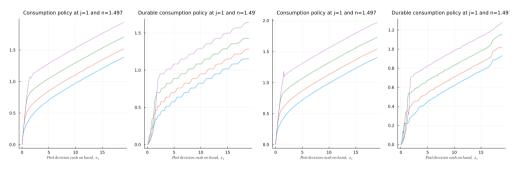


Figure: Adjuster policy functions based on coarse grid, J=36, no borrowing. LHS is vfi with adjustment costs, RHS vfi without adjustment costs

No Borrowing: Adjuster Problem (2 years)

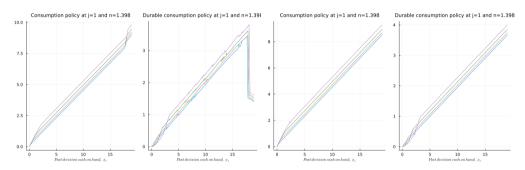


Figure: Adjuster policy functions based on fine grid, J=2. LHS is nvfi, RHS vfi

No Borrowing: Adjustment vs. Inaction Regions I

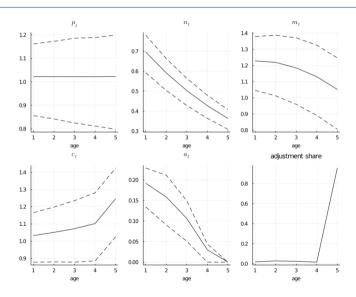
No Borrowing: Adjustment vs. Inaction Regions II

Collateral Constraint: Keeper Problem

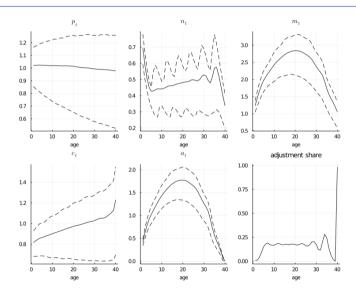
Collateral Constraint: Adjuster Problem

Collateral Constraint: Adjustment vs. Inaction Regions I

Collateral Constraint: Adjustment vs. Inaction Regions II



D. LIFE-CYCLE PROFILES


No Borrowing: Simulated Life-Cycle, J = 5

No Borrowing: Simulated Life-Cycle, J = 40

Collateral Constraint: Simulated Life-Cycle

GENERAL EQUILIBRIUM

A. THE MODEL

Environment

- The economy is populated by a continuum of measure 1 of **households** that face an income fluctuation problem over their life-cycle.
- Labor income fluctuates because individuals differ in their **stochastic labor productivity** which is itself characterized by an (age-dependent) *Markov process*. Idiosyncratic labor productivity is also subject to a *transitory shock*.
- They can use their labor income to **consume**, either non-durable or durable goods, or **save** it into a financial asset.
- The purchase of **durable goods** can also be seen as an investment, however, their purchases are subject to *proportional adjustment costs*.
- The demand of financial assets (capital) comes from a single representative **firm** that combines it with labor to produce the single final good in the economy.

Households: Demographics

- Each household lives at most J periods. They work during the first $J_R < J$ periods of their lives and then they retire.
- In each period j < J of their life they face a conditional probability of surviving and living in the next period j + 1. We denote it by $s_j \in (0, 1)$ with $s_0 = 1$ and $s_J = 1$.
- In each period a number $\lambda_1 = (1 + \sum_{j=1}^{J-1} \Pi_{i=1}^j s_j + g_n)$ of newborns enter the economy and the fraction of people in the economy at age j is defined recursively as:

$$\tilde{\lambda}_{j+1} = rac{s_j \lambda_j}{1 + g_n}$$

- We normalize the fraction of people at each age such that the total population in this economy is equal one. That is:

$$\lambda_j = \frac{\tilde{\lambda}_j}{\sum_{j=1}^J \tilde{\lambda}_j}$$

Households: Endowments & Labor Productivity

- Initial **endowment** of durable consumption good, $n_0 \ge 0$.
- Initial financial position, $a_0 \ge 0$.
- One unit of time that they supply inelastically to the labor market. However, they differ in their **labor productivity** $\eta_{i,j}$, which itself depends also on age. Here, we follow two distinct approaches:
 - 1. Canonical (linear) model:

$$\begin{split} \eta_{i,j} &= \rho \eta_{i,j-1} + \psi_{i,j}, \\ \eta_{i,0} &\stackrel{\textit{id}}{\sim} \mathcal{N}\left(0, \sigma_{\eta_1}\right), \ \psi_{i,j} \stackrel{\textit{iid}}{\sim} \mathcal{N}\left(0, \sigma_{\psi}\right), \ \xi_{i,j} \stackrel{\textit{iid}}{\sim} \mathcal{N}\left(0, \sigma_{\xi}\right) \end{split}$$

2. Non-linear model à la De Nardi et al. (2020):

$$\eta_{i,j} = Q_{\eta} \left(\nu_{i,j} \mid \eta_{i,j-1}, j \right), \nu_{i,j} \stackrel{\textit{iid}}{\sim} U(0,1), j > 1$$
$$\eta_{i,0} \stackrel{\textit{iid}}{\sim} \mathcal{N} \left(0, \sigma_{\eta_1} \right), \ \psi_{i,j} \stackrel{\textit{iid}}{\sim} \mathcal{N} \left(0, \sigma_{\psi} \right), \ \xi_{i,j} \stackrel{\textit{iid}}{\sim} \mathcal{N} \left(0, \sigma_{\xi} \right)$$

Households: Optimization

$$v(a, n, \eta, j) = \max\{V_{NA}(a, n, \eta, j), V_{A}(a, n, \eta, j)\}$$

where

$$V_{NA}(a, n, \eta, j) = \max_{c} u(c, n) + s_{j} \beta \mathbb{E} \left[v\left(a', n', \eta', j + 1\right) \right]$$
s.t.
$$a' = Ra + \omega \xi_{j} \eta_{j} - c$$

$$n' = (1 - \delta^{d}) n$$

$$a' \ge -(1 - \theta)(1 - \delta^{d} - \tau) n'$$

and

$$V_{A}(a, n, \eta, j) = \max_{c, d} u(c, d) + s_{j} \beta \mathbb{E} \left[v\left(a', n', \eta', j + 1\right) \right]$$
s.t.
$$a' = Ra + \omega \xi_{j} \eta_{j} + (1 - \tau)n - c - d$$

$$n' = (1 - \delta^{d})d$$

$$a' \ge -(1 - \theta)(1 - \delta^{d} - \tau)n'$$

Technology: A Single Representative Firm

- There is a **single good** in this economy which is produced combining aggregate capital stock K_t and aggregate labor input L_t . That is:

$$Y_t = F(K_t, L_t) = K_t^{\alpha} L_t^{1-\alpha}$$

- Since the Cobb-Douglas production function exhibits constant returns to scale, the number of firms is indeterminate at equilibrium. Thus, we can assume without loss of generality that there is a **single representative firm**.
- The final good can be either consumed or invested into physical capital or consumer durables. Thus, the **aggregate resource constraint** is given by:

$$C_t + K_{t+1} - (1 - \delta)K_t + K_{t+1}^d - (1 - \delta^d)K_t^d = F(K_t, L_t)$$

where C_t is aggregate consumption expenditures and K_t^d is the aggregate stock of consumer durables.

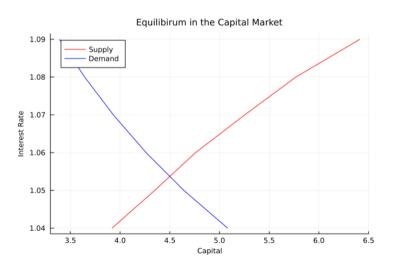
Equilibrium Definition

<u>A stationary equilibrium</u> is a pair of value functions $\{V_{NA}^{\star}, V_{A}^{\star}\}$; a set of policy functions for the household $\{c_{NA}^{\star}, c_{A}^{\star}, d_{A}^{\star}\}$; labor and capital demand for the representative firm $\{K, L\}$; and prices $\{\omega, r\}$ such that:

- 1. Given $\{\omega, r\}$, $\{V_{NA}^{\star}, v_A^{\star}\}$ solve the household problem and $\{c_{NA}^{\star}, c_A^{\star}, d_A^{\star}\}$ are the associated policy functions.
- 2. Input prices satisfy:

$$r = F_K(K, L) - \delta$$
$$\omega = F_L(K, L)$$

3. Markets clear:


$$\sum_{j=1}^{J}\sum_{i=1}^{N}\lambda_{j}a_{ij}^{\star}=K \qquad \text{(Capital Market)}$$

$$\sum_{j=1}^{J_{R}}\sum_{i=1}^{N}\lambda_{j}\xi_{ij}\eta_{ij}=L \qquad \text{(Labor Market)}$$

B. THE EQUILIBRIUM

Graphical Representation

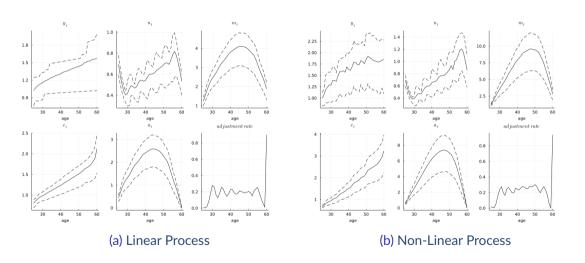
Summary Statistics: Aggregate Variables

Variable	Steady state value				
r	5.37%				
ω	0.902				
L	1.154				
K	4.492				
K^d	0.702				
$(K+K^d)/Y$	2.293				
C/Y	0.730				

Summary Statistics: Life-Cycle Moments

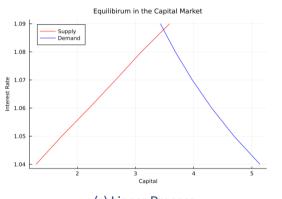
		Age Group						
Variable	Moment	26-30	31-35	36-40	41-45	46-50	51-55	56-60
Уј	Mean	1.213	1.444	1.614	1.723	1.796	1.865	1.817
	Std.	0.502	0.677	0.755	0.776	0.825	0.882	0.955
Cj	Mean	0.847	1.104	1.395	1.719	2.046	2.449	2.864
	Std.	0.209	0.341	0.472	0.613	0.747	0.932	1.213
a _j	Mean	1.726	3.661	5.580	6.924	7.253	5.788	1.888
	Std.	0.986	1.990	3.011	3.661	3.719	3.166	1.749
nj	Mean	0.454	0.473	0.603	0.710	0.807	0.988	1.081
	Std	0.137	0.193	0.256	0.306	0.362	0.629	0.495
$(a_j+n_j)/y_j$	Mean	1.891	3.026	4.126	4.826	5.007	4.156	1.952
	Std.	0.755	1.429	2.177	2.667	2.889	2.781	1.791

SENSITIVITY ANALYSIS



A. THE LABOR PRODUCTIVITY PROCESS

(LINEAR VERSUS NON-LINEAR)


PE: Simulated Life-Cycle Profiles ($R^* \approx 1.05$)

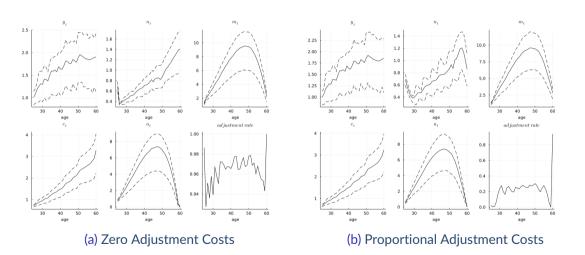
GE: Equilibrium in the Capital Market

Equilibirum in the Capital Market 1.09 Supply Demand 1.08 est Rate 1.07 1.06 1.05 1.04 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Capital

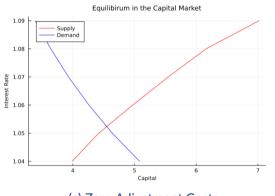
(a) Linear Process

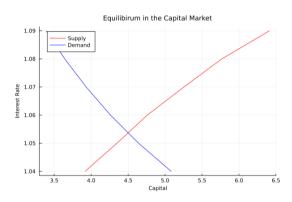
(b) Non-Linear Process

GE: Aggregate Results


Variable	Non-Linear Process	Linear Process
r	5.37%	8.80%
ω	0.902	0.832
L	1.154	1.669
K	4.492	3.476
K^d	0.702	0.547
$(K + K^d)/Y$	2.293	2.175
C/Y	0.730	0.744

B. ADJUSTMENT COSTS


PE: Simulated Life-Cycle Profiles ($R^* \approx 1.05$)



GE: Capital Market Clearing

(a) Zero Adjustment Costs

(b) Proportional Adjustment Costs

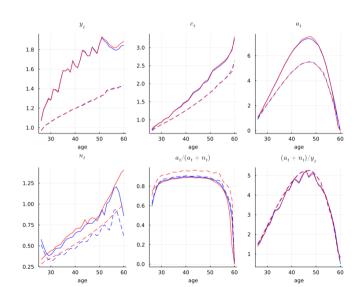
GE: Aggregate Results

Variable	Zero Adjustment Costs	Proportional Adjustment Cost
r	5.24%	5.37%
ω	0.904	0.902
L	1.154	1.154
K	4.513	4.492
\mathcal{K}^d	0.742	0.702
$(K+K^d)/Y$	2.308	2.293
C/Y	0.728	0.730

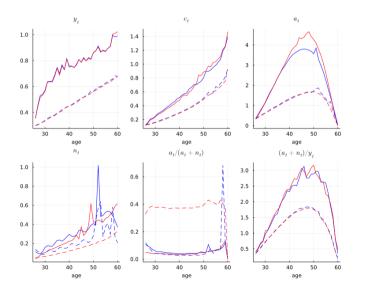
C. Borrowing Constraints

D. ARE THERE SOME INTERACTIONS?

Interactions: labor productivity & adjustment costs I


	Non-	linear Income	Linear Income			
	Zero Costs	Proportional Costs	Zero Costs	Proportional Costs		
r	5.24%	5.37%	8.73%	8.80%		
ω	0.904	0.902	0.833	0.832		
L	1.154	1.154	1.669	1.669		
K	4.513	4.492	3.482	3.476		
K^d	0.742	0.702	0.578	0.547		
$(K+K^d)/Y$	2.308	2.293	2.188	2.175		
C/Y	0.728	0.730	0.742	0.744		

Interactions: labor productivity & adjustment costs II


Cross Sectional Mean

- 1. Non-Linear + Adj. Costs (blue solid)
- 2. Non-Linear + Zero Costs (red solid)
- 3. Linear + Adj. Costs (blue dash)
- 4. Linear + Zero Costs (red dash)

Interactions: labor productivity & adjustment costs III

Cross Sectional Std.

- 1. Non-Linear + Adj. Costs (blue solid)
- 2. Non-Linear + Zero Costs (red solid)
- 3. Linear + Adj. Costs (blue dash)
- 4. Linear + Zero Costs (red dash)

APPENDIX

A. SOLUTION METHOD

Normalizing the Collateral Constraint

- Define $\hat{a}' \equiv a' + (1 \theta)(1 \tau)n'$
- The non-adjuster problem now reads:

$$V_{NA}(\hat{a}, n, \eta, j) = \max_{c} u(c, n) + s_{j}\beta \mathbb{E}\left[v\left(a', n', \eta', j+1\right)\right]$$
s.t.
$$\hat{a}' = R\hat{a} + \omega \xi_{j}\eta_{j} + (1 - \delta - R)(1 - \theta)(1 - \tau)n - c$$

$$n' = (1 - \delta^{d})n$$

$$\hat{a}' \ge 0$$

- While the adjuster problem is now given by:

$$V_{A}(\hat{a}, n, \eta, j) = \max_{c, d} u(c, d) + s_{j} \beta \mathbb{E} \left[v\left(a', n', \eta', j + 1\right) \right]$$
s.t. $\hat{a}' = R\hat{a} + \omega \xi_{j} \eta_{j} + (1 - \tau)n + (1 - \delta - R)(1 - \theta)(1 - \tau)n - c - d$

$$n' = (1 - \delta^{d})d$$

$$\hat{a}' \ge 0$$

Re-writing the problem in terms of "cash-on-hand"

- Define $m \equiv R\hat{a} + \omega \xi_i \eta_i + (1 \delta R)(1 \theta)(1 \tau)n$
- Then, we could rewrite the non-adjuster problem as follows:

$$V_{NA}(m, n, \eta, j) = \max_{c} u(c, n) + s_{j} \beta \mathbb{E} \left[v(m', n', \eta', j + 1) \right]$$

s.t. $\hat{a}' = m - c \ge 0$
 $n' = (1 - \delta^{d}) n$
 $m' = R \hat{a}' + \omega \xi_{j} \eta'_{j} + (1 - \delta - R)(1 - \theta)(1 - \tau) n'$

- And the adjuster problem as:

$$V_{A}(m, n, \eta, j) = \max_{c, d} u(c, d) + s_{j}\beta \mathbb{E} \left[v(m', n', \eta', j + 1) \right]$$
s.t. $\hat{a}' = m + (1 - \tau)n - c - d \ge 0$

$$n' = (1 - \delta^{d})d$$

$$m' = R\hat{a}' + \omega \xi_{j}\eta'_{j} + (1 - \delta - R)(1 - \theta)(1 - \tau)n'$$

Nested Value Function Iteration

- Post-decision value function:

$$W(\hat{a}', d, \eta, j) = s_j \beta \mathbb{E} \left[v(m', n', \eta', j+1) \right]$$

- Non-adjuster problem:

$$\begin{aligned} V_{NA}\left(m,n,\eta,j\right) &= \max_{c} u\left(c,n\right) + W\left(\hat{a}',d,\eta,j\right) \\ \text{s.t.} \quad \hat{a}' &= m-c \geq 0 \\ d &= n \end{aligned}$$

- Adjuster problem:

$$V_A(x, \eta, j) = \max_{d} V_{NA}(m, d, \eta, j)$$

s.t. $m = x - d$
 $d \in [0, x]$

Nested Endogenous Grid Method

B. SPEED & ACCURACY

Speed: Serial Computation

	Method			Age		
		<i>t</i> = 1	<i>t</i> = 2	t=3	<i>t</i> = 4	<i>t</i> = 5
Last period	NVFI+ NEGM+					0.592 0.588
Post-decision	NVFI+ NEGM+	77.621 161.144	75.968 146.7429	76.696 151.412	76.919 151.853	
Keeper	NVFI+ NEGM+	6.651 0.570	6.597 0.485	6.267 0.477	7.524 0.771	
Adjuster	NVFI+ NEGM+	4.572 4.496	4.860 4.392	4.784 4.507	4.881 4.703	
TOTAL	NVFI+ NEGM+					5 <i>min.</i> 55 <i>se</i> 10 <i>min.</i> 33 <i>se</i>

Speed: Parallel Computation (6 cores)

	Method			Age			
	Method	t = 1	<i>t</i> = 2	t=3	t = 4	<i>t</i> = 5	
Last period	NVFI+ NEGM+					2.453 2.605	
Post-decision	NVFI+ NEGM+	17.952 40.537	18.193 38.345	17.499 38.387	19.234 38.182		
Keeper	NVFI+ NEGM+	17.741 0.614	17.538 0.641	17.304 0.602	17.445 1.038		
Adjuster	NVFI+ NEGM+	0.968 1.019	0.955 1.194	1.049 1.013	1.354 1.537		
TOTAL	NVFI+ NEGM+						2min. 30sec. 2min. 46sec.

Speed: Parallel Computation (HPC with up to 24 cores)

Maximum speed times:

- NVFI+: 2min09sec

- NEGM+: 1min30sec