Housing & rental markets, mortgage policies, and the wealth distribution

Juan Castellanos

Andrew Hannon

European University Institute

University of Cambridge

Gonzalo Paz-Pardo ECB, DG Research

Cooper Working Group November 22, 2022

Motivation

- It is well-known that housing is a key component of household's wealth.
 - * This feature highlights the role of housing as an asset
 - * But it is also an important consumption good
- Particularly after the *Great Financial Crisis*, many economists have studied the relationship between house prices and household's mortgage debt.
 - * What is the role of credit in generating cyclical movements in real estate prices?
 - * How does these dynamics affect the cyclical fluctuations of the economy?
 - * As a result, many countries implemented borrowing based macro-prudential policies
- Studying housing policies requires looking also at the rental market because
 - * All households must choose between owning or renting
 - * Landlords make portfolio choices that involve both markets

What we do

- We focus on a particular **macro-prudential intervention in Ireland** where they have imposed regulatory LTI and LTV limits for mortgages
 - * What has been its impact on house prices and rents?
- We build a **life-cycle heterogenous agent model** with two key components:
 - * Endogenous housing tenure choices
 - * Equilibrium in rental and housing markets
- Our setup allow us to analyze
 - * Homeownership rates
 - * Price to rent ratios and housing affordability
 - * Welfare (losses)
- Framework also useful to study the housing cycle, but not the goal of this paper

What we find

- Empirically:

- * LTV & LTI limits reduced house prices in areas where they were high as shown in Acharya, Bergant, Crosignani, Eisert and McCann (2022, J Finance) . . .
- * But it is also associated to increased rents!

Model mechanisms:

- * The increased rental demand by constrained households is the main mechanism through which rental prices go up.
- * Landlords (mostly unaffected by the reform) increase supply but they cannot meet all the demand. Hence, in addition to the increase in rental prices we also obtain a **reduction in homeownership** rates.

- Welfare analysis:

- * Along the transition, the reform benefits the old and hurts the young
- * Largest welfare losses for percentiles 20-30 in the income distribution

Roadmap

- 1. Introduction
- 2. Literature
- (3.) Housing & Rental Market in Ireland
- 4. The Macro-Pru Reform
 - 4.1 Institutional Details
 - 4.2 Empirics
- 5. Model

LITERATURE

State-of-the-art models

- Mostly concerned with explaining boom-bust cycles in house prices
 - * Favilukis, Ludvigson, and Van Nieuwerburgh (2016, JPE)
 - Relaxing credit constraints lead to large booms in house prices
 - * Justiniano, Primiceri, and Tambalotti (2019, JPE)
 - Importance of increase in credit supply for the boom
 - * Kaplan, Mitman, and Violante (2020, JPE)
 - Large role of fluctuations in beliefs
 - * Garriga and Hedlund (2020, AER)
 - Key role of liquidity in generating house price dynamics
- What happens in the rental market?

Understanding of housing and rental markets

- Traditional assumptions
 - * No renting \rightarrow 100% homeownership
 - * Inelastic rents
 - * Fully elastic rents
- Greenwald and Guren (2021)
 - * Segmentation between rental and owner-occupied housing matters.
 - * Stronger reaction of house prices to credit conditions.
- This paper
 - * Endogenous decisions to be renter, homeowner, or landlord
 - * Portfolio decisions of (relatively small) landlords
 - * Endogenous movement of rent to price ratios
 - * Implications for homeownership, rents, house prices, welfare, etc.

HOUSING & RENTAL MARKETS IN IRELAND

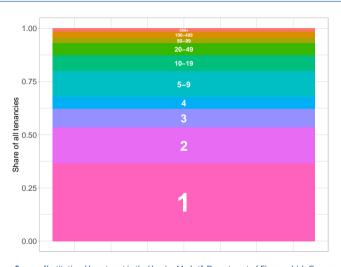
Structure of the housing and rental markets in Ireland

- Homeownership rate

- * Around 70-80%
- * Higher than in the US (\approx 65%)

Mortgages

- * Most common: variable interest rate.
- * Also very frequent: short term fixed rates with 2 or 5 year contracts
- Very limited mortgages with fixed rate until maturity


- The rental stock

- * Mostly owned by *small investors* with 1 or 2 properties
- * Institutional investors are not so relevant after all

Many small landlords

Source: "Institutional Investment in the Housing Market", Department of Finance, Irish Government

THE MACRO-PRUDENTIAL REFORM

Institutional details

- First discussed in October 2014.
- Officially announced and directly implemented in **February 2015**.
- Loan-to-Value (LTV) requirements:
 - * In general, the limit was set to 80%.
 - * For first time buyers (FTB) can be 90% if the property value is below € 220,000.
 - * For buy-to-let (BTL) properties the limit is even more stringent: 70%.
 - * 15% of new lending can be above limit.
- Loan-to-Income (LTI) requirements:
 - * 3.5 times household income.
 - * 20% of bank lending can be above limit.

Cyclical evolution of house prices and rents in Ireland

Source: Daft.ie property website based on Keely and Lyons (2020, JREFE)

EMPIRICAL FINDINGS

House prices reacted to policy changes ...

- Acharya, Bergant, Crosignani, Eisert, McCann (2022, J Finance) study the impact of the reform on house prices.
- Their **empirical strategy**:
 - * Construct a *Distance* variable that captures the exposure to lending limits (LTI & LTV) across the 26 counties and the income distribution.
 - Counties with lower house prices are further from the limits.
 - High income borrowers are further from the limits.
 - * They regress house price changes on the *Distance* measure.
 - * Main Finding: house-prices increased more in more distant counties.
- Implication: the policy reform reduced prices where they were the highest.

But what about rents?

- We replicate their empirical strategy with data on rents:

$$\Delta HP_i = \beta_0 + \beta_1 \text{Distance}_i + \epsilon_i \tag{1}$$

$$\Delta HR_i = \gamma_0 + \gamma_1 \text{Distance}_i + \nu_i \tag{2}$$

where i is county, Δ is change between 2014Q3 and 2016Q4

	House prices	Rents
Distance	0.289	-0.171
	(0.068)	(0.039)
Obs.	54	54
R^2	0.34	0.31

- In areas where limits were more stringent, rents increased by more!

THE MODEL

Households

Environment

- Economy is populated by OLG of households whose life cycle is divided between:
 - * Work \rightarrow 25 to 65 years old
 - * Retirement \rightarrow 66 to 100 years old
- During the working stage, they are subject to uninsurable **idiosyncratic income shocks** to their efficient units of labor, which they supply inelastically. That is,

$$y = ws (3)$$

where w denotes the wage and s is the persistent labor productivity.

- Households can save in financial assets whose return r is fixed. They can also save in real estate whose prices $\{p_{h_1}, p_{h_2}, p_r\}$ are determined in equilibrium.
- Households derive **utility** from non-durable consumption *c* and housing *h*

$$u(c,h) = \frac{(c\,\theta(h))^{1-\gamma}}{1-\gamma} \tag{4}$$

where $\theta(\cdot)$ is a step function that captures the extra utility from ownership.

Housing & mortgages

- We think of the **housing state** as the number of houses owned:

$$h \in \{0, 1, 2, 3\} \tag{5}$$

so we can distinguish between renters, homeowners and landlords.

- Houses are **priced differently** depending if they are owner-occupier p_{h_1} or buy-to-let p_{h_2} properties.
- Houses are **illiquid**, i.e. they are subject to transaction costs when bought and sell, τ_h They are also **costly to maintain**, δ_h .
- Households can **borrow** (a < 0) at a rate $r(1 + \kappa)$ but the amount borrowed is limited by two **financial** constraints:

$$a' \ge -\lambda_{LTV} \, \mathcal{P}^b(h, h', \rho_{h_i}) \tag{6}$$

$$a' \ge -\lambda_{LTI} y \tag{7}$$

that can only bind at origination. For the remaining life of the mortgage, households must at least pay interests and **amortize** a minimum amount per period.

Household's problem

$$V(a, h, y, j) = \max_{a', h'} \left\{ \frac{\left(c \theta(h)\right)^{1-\gamma}}{1-\gamma} + \sigma_{\varepsilon} \varepsilon(h) + \beta \mathbb{E} V(a', h', y', j+1) \right\}$$
s.t.
(8)

$$c + a' + \mathbb{I}_{h'>h} (1 + \tau_h) \mathcal{P}^b(h, h', p_{h_i}) + \delta_h \mathcal{P}^k(h, h', p_{h_i}) \le ws_j + (1 + r (1 + \mathbb{I}_{a'<0} \kappa)) a + \mathbb{I}_{h'

$$(9)$$$$

$$a' \ge \begin{cases} \max\{-\lambda_{LTV}\mathcal{P}^b(h, h', p_{h_i}), -\lambda_{LTI}y\} & \text{if } h' > h\\ a(1 + r(1 + \kappa) - m(t)) & \text{if } h > 0 \text{ and } a < 0\\ 0 & \text{otherwise} \end{cases}$$

$$(10)$$

$$\varepsilon(h)\sim F$$
, extreme value dtb (11)

$$m(j) = \frac{r(1+\kappa)(1+r(1+\kappa))^{J-j}}{(1+r(1+\kappa))^{J-j}-1}$$
(12)

SUPPLY SIDE & MARKETS

Production

- Construction Firms: combine land L (fixed) and structures S_i through a Cobb-Douglas technology:

$$Y_{h_i} = A_{h_i} L^{\alpha_i} S_i^{1-\alpha_i}$$
 for $i = \{1, 2\}$ (13)

- * Owner-occupied and BTL properties are produced with degrees of efficiency. We assume that $A_{h_1} < A_{h_2}$ which makes owner-occupied housing more expensive.
- **Final Goods Producer**: operates a Cobb-Douglas technology that uses labor and capital to produce the consumption good:

$$Y_c = A_c K^{\alpha_k} N^{1-\alpha_k} \tag{14}$$

$$Y_c = C + S_1 + S_2 (15)$$

where C is consumption, K is capital (fixed) and N is the size of the labor force (normalized to 1).

Market clearing & equilibrium

- r is fixed \rightarrow small open economy
- Housing market
 - * Houses bought = houses produced + houses sold depreciation

$$p_{h_i} = \frac{1}{1 - \alpha_I} \left(\frac{1}{A_{h_i}} \right)^{\frac{1}{1 - \alpha_I}} \left(\delta_h H_i \right)^{\frac{\alpha_I}{1 - \alpha_I}} \tag{16}$$

where H_1 corresponds to owner-occupied units while H_2 corresponds to BTL properties.

- * We get house price variation through the home-ownership rate (H_1) an equilibrium object.
- Our technology assumption together with market clearing imply

$$\frac{A_{h_1}}{A_{h_2}} = \left(\frac{p_{h_2}}{p_{h_1}}\right)^{1-\alpha_I} \left(\frac{H_1}{1-H_1}\right)^{\alpha_I} \tag{17}$$

- Rental market
 - * Competitive, renters meet landlords
 - * p_r is determined numerically using the household's equilibrium distribution

CALIBRATION

External calibration

- Earnings process
 - * The average age profile is taken from the Irish Household Finance and Consumption Survey (HFCS)
 - * The stochastic component is recovered using the non-linear, age-varying approach proposed by De Nardi, Fella and Paz-Pardo (2020, JEEA)
- Initial conditions
 - * Start households at low initial wealth (log-normal with mean € 5,000)
 - * There are no initial homeowners
- Pick some parameters externally:

γ	α_I	A_c	δ_{k}	α_k	r	κ
2.00	0.33	0.90	0.02	0.30	0.02	0.02

Internal calibration: targeted moments

- For now, we pick A_{h_2} , δ_h , β , θ and τ_h to match home-ownership rate, rent-to-house price ratio and wealth accumulation. A_{h_1} is a free parameter that is pinned down using (16)
 - * Model fit:

	Data	Model
Wealth to income ratio House price to income ratio Owner occupied to BTL price ratio Homeownership rate	6.78 5 1.37	5.26 4.60 1.37 80.66%

* Parameters:

A_{h_1}	A_{h_2}	δ_h	β	θ	$ au_h$
0.065	0.055	0.005	0.945	1.38	0.035

* This calibration implies:

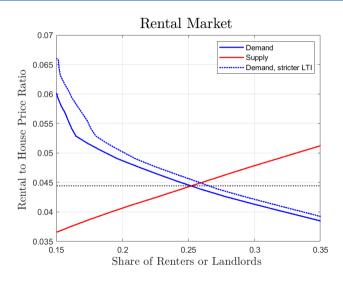
Rental rate to income	13.12%
Price to rent ratio	35.10
Share of landlords with two houses	3.78%

RESULTS

Main experiments

- Baseline

- * LTV = 100% and LTI = 6
- * Consistent with empirical evidence in Kelly, McCann and O'Toole (2018)

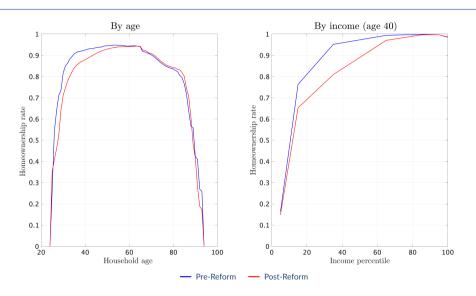

- Full Reform

- * LTV = 80% and LTI = 3.5
- * Current institutional framework in Ireland is more stringent (tighter limits)

- Only LTI

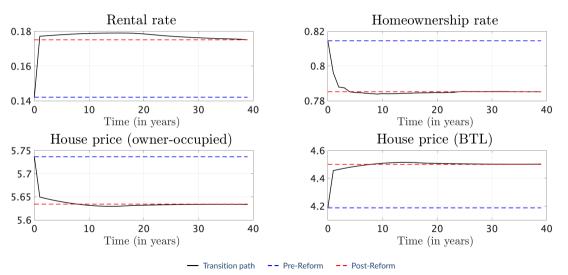
- * LTV = 100% and LTI = 3.5
- * Where is most of the action coming from?
- Other aspects of the reform, such as FTB exemptions, are still work in progress

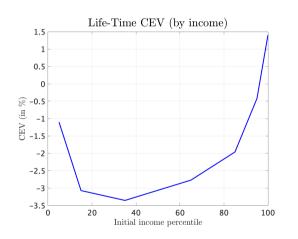
Steady state comparison

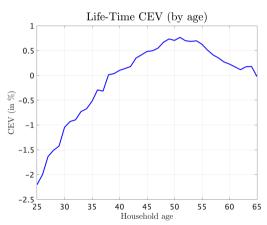


	Pre-Reform	Post-Reform	Only LTI
	LTI = 6, LTV = 100%	LTI = 3.5, LTV = 80%	LTI = 3.5, LTV = 100%
Rent-to-Price	2.84 %	3.39 %	3.34 %
Owner-occupied house price to income	4.86	4.78	4.79
Buy-to-let house price to income	3.55	3.78	3.75
Rent to Income	13.12 %	15.47 %	15.25 %
Homeownership rate	80.66 %	78.07 %	78.32 %

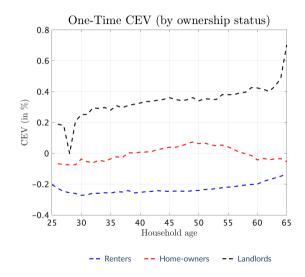
- Lower average house prices (↓ 1%), but homeownership rate decreases (↓ 2.59 p.p) and rental prices rise (↑ 17.94 %)
- Owner-occupied house prices drop, while BTL properties rise due to the decrease home-ownership rate
- Largest effects come from the LTI reform


Home-ownership rate by age and income


Transitional dynamics in the housing & rental markets



Welfare



Welfare

Summary:

- Largest welfare losses for low-to-middle income households
- It benefits the old, but hurts the young
- Landlords gain by far the most from the reform
- Losses are concentrated on the renters
- Home-owners are marginally worse off

Conclusion

- We have evaluated a macro-prudential reform with a housing tenure model and find that *in the long-run* more stringent borrowing limits lead to
 - * Lower house price growth
 - * Higher rental prices
 - * Lower home-ownership rates
- Along the transition, its effects are heterogenous over the age and income distribution
 - * The young and low-income earners are significantly worse off
 - * The old and high-income earners are marginally better off
- These interventions in the housing market have spillovers to the rental markets and have consequences for housing affordability
- Understanding rental markets is key for the study of house price cycles

THANK YOU!

The landlord sector in the US

Most landlords are individuals who own just a few units

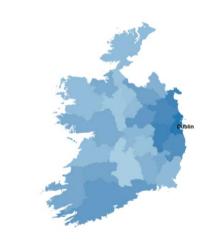
U.S. landlords by number of units owned, 2018

Note: "Other" includes nonprofits, cooperatives, trusteeships and other ownership forms.

Source: Census Bureau, "Rental Housing Finance Survey," 2018; Pew Research Center analysis.

PEW RESEARCH CENTER

Mortgage Measures Framework Review


- Relaxation of the rules were announced in October 2022
- These measures will come into effect in January 2023
- First-Time-Buyers (FTB)
 - * The LTI limit increases from 3.5 to 4 times household's income
 - * No changes in the LTV limit
- Second and Subsequent Buyers (SSB)
 - * The LTV limit increases from 80% to 90%
 - No changes in the LTI limit
- The proportion of lending above limits applies at the level of borrower type
 - * 15% of FTB and SSB can be above limit
 - * 10% of BTL lending can be above limit

Data Sources

- Data on **house prices and rents** obtained from **daft.ie** property website (Lyons, 2022)
 - * 54 housing markets (26 counties + cities + all postcodes in Dublin)
- **Distance measure** computed at borrower level (Acharya et al., 2022)
 - * Look at households who obtain a mortgage in year 2014
 - Compute the distance of their mortgage from the new limits
 - Group over 26 counties and over the income distribution
 - * Take averages

Note: darker means less distance from limits

House Price Indicators

- If the household is a net buyer, i.e. h' > h, then

$$\mathcal{P}^{b}(h, h', p_{h_{i}}) = \mathbb{I}_{h=0}p_{h_{1}} + \mathbb{I}_{h'>1}p_{h_{2}}(h'-1)$$
(18)

- When selling, i.e. h' < h, we have that

$$\mathcal{P}^{s}(h, h', p_{h_{i}}) = \mathbb{I}_{h'=0} p_{h_{1}} + \mathbb{I}_{h>1} p_{h_{2}} (h-1)$$
(19)

- Finally, if the household *keeps* living in the same property next period the pricing function that holds is

$$\mathcal{P}^{k}(h, h', p_{h_{i}}) = \mathbb{I}_{h=1} p_{h_{1}} + \mathbb{I}_{h'>1} p_{h_{2}} (h'-1)$$
(20)

Construction Sector Optimization

- A competitive sector produces housing Y_h taking land L and structures S as inputs.
- Their operating profits are:

$$\Pi_h^i = p_{h_i} A_{h_i} L^{\alpha_l} S_i^{1-\alpha_l} - p_l L - S_i$$
(21)

- Land is fixed. Thus, taking derivatives only with respect to S_i :

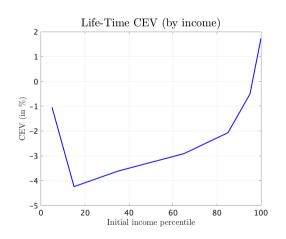
$$\frac{\partial \Pi_h}{\partial S_i} = 0 \Leftrightarrow 1 = p_h A_h L^{\alpha_l} S^{-\alpha_l} (1 - \alpha_l)$$
 (22)

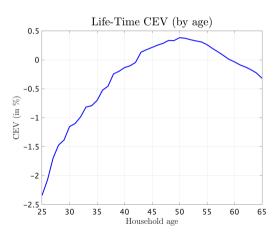
- And solving for the house price, we get

$$p_{h_i} = \frac{1}{A_h} \left(\frac{S_i}{L}\right)^{\alpha_I} \frac{1}{1 - \alpha_I} \tag{23}$$

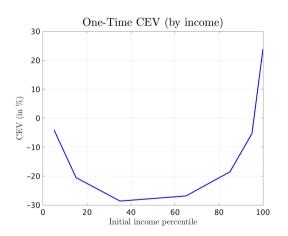
Equliibrium Definition

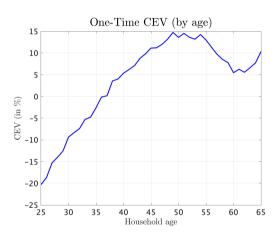
Definition 1: Competitive Equilibrium


Given an interest rate r, a recursive competitive equilibrium is a value function V, policy functions for the households $\{c, h', a'\}$, policy functions for the firms $\{N, L, S\}$, prices $\{w, p_{h_1}, p_{h_2}, p_r, p_l\}$ and a stationary distribution μ such that:


- 1. Given prices, value and policy functions solve the households optimization problem
- 2. Producers maximize profits
- 3. All markets (labor, housing, land, rental) clear

Welfare: CEV across steady states





Welfare: one-time compensation

