The aggregate and distributional implications of credit shocks on house and rental markets

Juan Castellanos

Andrew Hannon

European University Institute

University of Cambridge

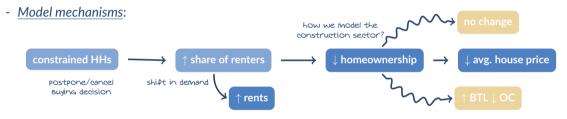
Gonzalo Paz-Pardo ECB, DG Research

EUI's 4th Year Forum January 25, 2023

Motivation

- Housing has a dual role . . .
 - * As a consumption $good \rightarrow if$ households don't buy a house, they must rent it
 - * As an asset/investment \rightarrow capital gains + cash flows for landlords
- Housing and rental markets are economically and politically very relevant and thus **subject to regulation**, e.g. tax advantages, subsidies, etc.
- Understanding the effects of these policies on household's welfare as well as on the dynamics of house prices and rents requires a **joint study of both markets**
 - * Tax advantages to incentivize homeownership $\implies \uparrow$ house prices, \downarrow rents
 - * Financial shocks that limit credit $\implies \downarrow$ house prices, \uparrow rents

What we do



- Build a life cycle heterogenous agents model with **two key features**:
 - * Endogenous housing tenure choices \implies renters, homeowners or landlords
 - * Equilibrium in housing and rental markets \implies cov(house prices, rents) > 0
- Use the model to study the effects of a **credit shock**: the introduction of maximum LTV and LTI limits in Ireland in 2015.
 - * There were no limits before the reform
 - * After reform: 20% minimum downpayment + maximum loan to income of 3.5
 - * It was unexpected: first discussion October 2014
- Possible to study empirically. Done already for its effects on house prices. We extend the analysis to rents.

What we find

- $\underline{\textit{Empirically}}$: LTV & LTI limits $\implies \begin{cases} \downarrow \text{ house price growth (Acharya et al., 2022)} \\ \uparrow \text{ growth of rental prices} \end{cases}$

- Welfare analysis:
 - * At fixed prices: losses concentrated among the young and the middle income households
 - * Movements in rents: further harms the young and the middle income hh's, and slightly benefits the middle-age and the very rich.
 - * Full transition: quantitatively small role for the drop in house prices

Roadmap

- 1. Introduction
- 2. Related Literature
- 3. Model
 - 3.1 Households
 - 3.2 Production
 - 3.3 Equilibrium
- 4. A macro-prudential reform: the case of Ireland
 - 4.1 Empirical evidence
 - 4.2 Model parametrization & fit
 - 4.3 What does the model tells us?
- 5. Conclusion

RELATED LITERATURE

Housing in macroeconomics: state-of-the-art models

- Mostly concerned with explaining boom-bust cycles in house prices with conflicting findings
- Leading examples:
 - * Favilukis, Ludvigson, and Van Nieuwerburgh (2016, JPE)
 - Relaxing credit constraints lead to large booms in house prices
 - * Justiniano, Primiceri, and Tambalotti (2019, JPE)
 - Importance of increase in credit supply for the boom
 - * Kaplan, Mitman, and Violante (2020, JPE)
 - Large role of fluctuations in beliefs
 - * Garriga and Hedlund (2020, AER)
 - Key role of liquidity in generating house price dynamics
 - * Arslan, Guler and Kuruscu (2022)
 - Focus on the bank lending channel
- **Greenwald and Guren (2021)** point to the degree of *market segmentation* to explain the distinct findings: no segmentation, no house price changes; segmentation, rise in house prices if demand increases

Macroprudential policy: what about the costs?

- A broad <u>theoretical literature</u> on the **benefits of macroprudential policies** in terms of *financial and macroeconomic stability*.
 - * Lambertini, Mendicino, and Punzi (2013, JEDC)
 - * Farhi and Werning (2016, Ecta)
 - * Muñoz and Smets (2022)
- Fewer have studied their **negative consequences** for *household welfare* . . .
 - * Queiró and Oliveira (2022) ightarrow housing model à la Kaplan et al. (2020)
- Some recent empirical contributions that study these reforms include:
 - * Acharya, Bergant, Crosignani, Eisert and McCann (2022, J Finance)
 - * Van Bekkum, Irani, Gabarro and Peydró (2019)

THE MODEL

Households

Environment

- Economy is populated by OLG of households whose **life cycle** is divided between *working* $(j = 1, ..., J^{ret} 1)$ and *retirement* $(j = J^{ret}, ..., J)$. After age J, they die with certainty.
- Households derive **utility** from non-durable consumption c and housing services s^h

$$\mathbb{E}_0 \left\{ \sum_{j=1}^J \beta^{j-1} \frac{\left(c \, s^h\right)^{1-\gamma}}{1-\gamma} \right\} \tag{1}$$

where $\beta > 0$, c > 0 and s^h varies depending on the quality of the house where the household resides.

- Working age households receive an idiosyncratic labor income endowment

$$\log y = \log A_c + f(j) + \eta \tag{2}$$

where A_c is an index of aggregate productivity, f(j) is a polynomial in age and η is the stochastic persistent component. *Retirees* receive a fixed fraction of their last period income.

- Households can **save in liquid assets**, whose return *r* is fixed, or **in real estate**, whose prices are determined in equilibrium.

Housing & mortgages

- We think of the **housing state** as the number of houses owned:

$$h \in \{0, 1, 2, 3\} \tag{3}$$

so we can distinguish between renters, homeowners and landlords (with 1 or 2 rented out properties).

- Houses differ in their quality \mathcal{H} which in turn affect their price $p^h(\mathcal{H}) = \mathcal{H}p^h$ where p^h is the per-unit/average price.
- Houses are illiquid, i.e. they are subject to transaction costs when bought and sell, $\tau_h p^h(\mathcal{H})$. They are also **costly to maintain**, $\delta_h p^h(\mathcal{H})$.
- Households can **borrow** (a < 0) at a rate $r(1 + \kappa)$ but the amount borrowed is limited by two **financial constraints**:

$$a' \ge -\lambda_{LTV} \, p^h(\mathcal{H}) h'$$
 (4)

$$a' \ge -\lambda_{LTI} y$$
 (5)

that can only bind at origination. For the remaining life of the mortgage, households must at least pay interests and **amortize** a minimum amount per period.

Household's problem

$$V(a, h, y, j) = \max_{a', h'} \left\{ \frac{\left(c \, s^h\right)^{1-\gamma}}{1-\gamma} + \sigma_{\varepsilon} \, \varepsilon(h) + \beta \mathbb{E} V(a', h', y', j+1) \right\}$$
s.t.
(6)

$$c + a' + p^h(\mathcal{H})h' + \tau^h p^h(\mathcal{H})|h' - h| + \delta_h p^h(\mathcal{H})h < 0$$

$$y + (1 + r(1 + \mathbb{I}_{a' < 0} \kappa)) a + p^h(\mathcal{H})h + p_r(h - 1)$$

$$a' \ge \begin{cases} \max\{-\lambda_{LTV}p^h(\mathcal{H})h', -\lambda_{LTI}y\} & \text{if } h' > h\\ a(1+r(1+\kappa)-m(j)) & \text{if } h > 0 \text{ and } a < 0\\ 0 & \text{otherwise} \end{cases}$$
 (8)

$$\varepsilon(h) \sim F$$
, extreme value type I dtb

$$m(j) = \frac{r(1+\kappa)(1+r(1+\kappa))^{J-j}}{(1+r(1+\kappa))^{J-j}-1}$$
(10)

(9)

(7)

PRODUCTION

Final Good & Construction Sectors

- Final Good Producer

- * Linear technology: $Y_c = A_c N$, where A_c is the constant aggregate productivity and N are the unit of labor services.
- * Profit maximization \implies wage = A_c

- Housing Good Producer

- * Combines land L (fixed) and structures S through a Cobb-Douglas technology: $Y_h = A_h L^{\alpha_l} S^{1-\alpha_l}$ where α is the share of land in production.
- * Profit maximization $\implies p^h = \frac{1}{A_h} \left(\frac{S}{L}\right)^{\alpha} \frac{1}{1-\alpha}$

EQUILIBIRUM

Equilibrium Definition

Definition 1: Competitive Equilibrium

A competitive equilibrium is a value function $\{V\}$ and policy functions for the **households** $\{c, h', a'\}$, policy functions for the **firms** $\{N, L, S\}$, **prices** $\{w, p_h, p_r, p_l\}$ and a **stationary distribution** μ that jointly solve the household, final-good firm and construction firm problems, as well as the **market clearing** conditions

Housing:
$$Y_h = \delta_h H$$
 (11)

Aggregate Housing:
$$H = \sum_{n=1}^{N} \mathcal{H}_n H_n$$
 where $\sum_{n=1}^{N} H_n = 1$ (12)

Housing Permits:
$$L = \overline{L}$$
 (13)

Resources:
$$Y = C + S$$
 (14)

A MACRO-PRUDENTIAL REFORM: THE CASE OF IRELAND

Institutional framework

- First discussed in October 2014.
- Officially announced and directly implemented in **February 2015**.
- Loan-to-Value (LTV) requirements:
 - * In general, the limit was set to 80%.
 - * For first time buyers (FTB) can be 90% if the property value is below €220,000.
 - * For buy-to-let (BTL) properties the limit is even more stringent: 70%.
 - * 15% of new lending can be above limit.
- Loan-to-Income (LTI) requirements:
 - * 3.5 times household income.
 - * 20% of bank lending can be above limit.

Relaxation of the rules announced in October 2022

EMPIRICAL EVIDENCE

Parametric Evidence

- We **replicate Acharya et al. (2020)** empirical strategy using also **data on rents**:

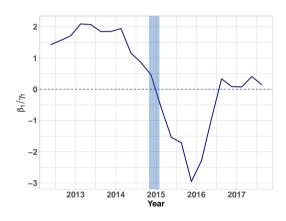
$$\Delta HP_i = \beta_0 + \beta_1 \text{Distance}_i + \epsilon_i \tag{15}$$

$$\Delta HR_i = \gamma_0 + \gamma_1 \text{Distance}_i + \nu_i \tag{16}$$

where i is county, Δ is change between 2014Q3 and 2016Q4

	Δ House prices	∆ Rents
Distance	0.289	-0.171
	(0.068)	(0.039)
Obs.	54	54
R^2	0.34	0.31

Robustness: Pre-Trends?



- Run placebo regressions (15) (16) using
 9-quarter rolling windows to compute
 growth rates
- Plot ratio of regression coefficients

*
$$\beta_1/\gamma_1 > 0 \implies cov(\Delta HP, \Delta HR) > 0$$

*
$$\beta_1/\gamma_1 < 0 \implies cov(\Delta HP, \Delta HR) < 0$$

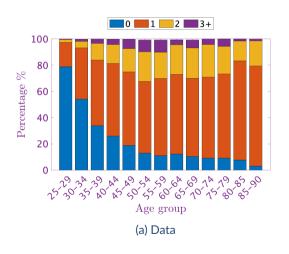
- Sign changes around the reform . . .
 - * Rents do not longer co-move with house prices as a result of the credit shock

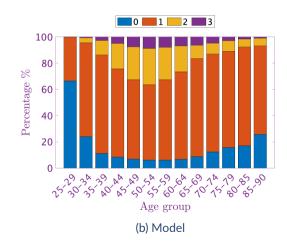
PARAMETRIZING THE MODEL

Externally calibrated parameters

Parameter	Interpretation	Value			
Earnings Process:					
ρ	Persistence parameter	0.9987			
σ_0	Std. initial condition	0.36			
$\sigma_{\sf u}$	Std. innovation	0.0049			
Externally calibrated:					
Jret	Working life (years)	41			
J	Length of life (years)	71			
γ	Risk aversion coefficient	2.0			
$\sigma_{arepsilon}$	Scale parameter (taste shock)	0.05			
$\{\tilde{h}^1, \tilde{h}^2\}$	Housing qualities	{1.0583, 0.7669}			
$ au^h$	Proportional transaction cost	0.05			
λ_{LTV}	Maximum loan-to-value ratio	1.0			
λ_{LTI}	Maximum Ioan-to-income ratio	6.0			
r	Risk-free rate	0.02			
κ	Intermediation wedge	0.02			
A_c	Aggregate labor productivity	1.25			
L	Amount of land	1.0			
α	Share of land in production	0.5			

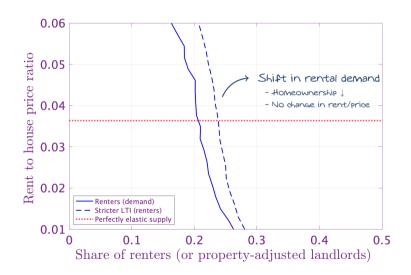
Internally calibrated parameters, targets, & model fit



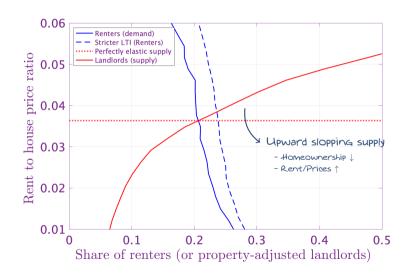

- The discount factor $\beta = 0.925$, the utility premium from ownership $s^h = 1.6$, the housing depreciation rate $\delta^h = 0.0106$, and the scaling factor in housing production $A_h = 0.0933$ are jointly chosen to match four moments of the data:

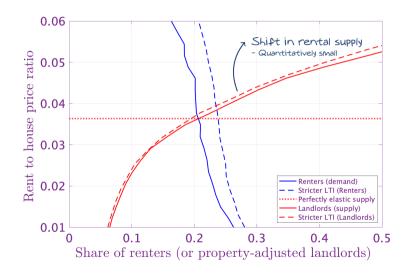
Moment	Model	Data	Source
Targeted:			
Wealth to income ratio	5.21	6.78	HFCS
Homeownership rate	79.39%	80%	EU-SILC
House price to avg. income ratio	4.70	5.0	CSO
House price to rents ratio	27.64	22.58	RTB/CSO
Untargeted:			
Rents to avg. income ratio	0.1702	0.2216	RTB/CSO
Share of households with 3+ properties	3.94%	5.11%	HFCS

Life-cycle patterns: number of properties



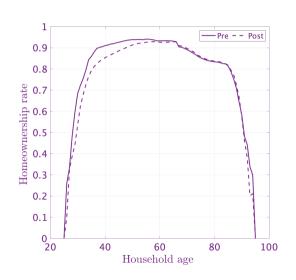
CONSTRAINING CREDIT: TIGHTER LTI & LTV LIMITS

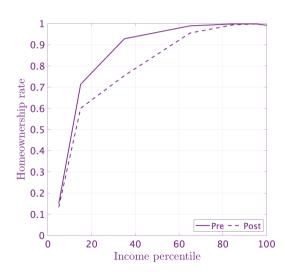

Model intuition: perfectly elastic supply


Model intuition: landlord heterogeneity

Model intuition: mostly unconstrained landlords

Steady State Comparison

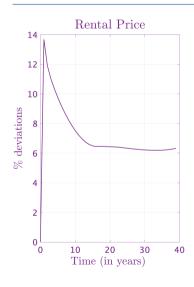

- First, study **aggregate effects** of the reform if it were to be permanent.
 - * Pre-reform economy $\rightarrow \lambda_{ITI}^{pre} = 6, \lambda_{ITV}^{pre} = 100\%$
 - * Post-reform economy $\rightarrow \lambda_{LTI}^{post} = 3.5, \lambda_{LTV}^{post} = 80\%$

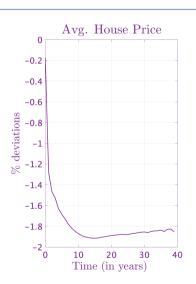

	Pre-Reform	Post-Reform
Rent-to-Price	3.62%	3.93%
Average house price to income	4.70	4.63
Rent to Income	0.17	0.182
Homeownership rate	79.39%	76.57%
Share of households with 3 properties	3.94%	4.63%
Share of houses in hands of 3-property landlords	38.23%	39.61%

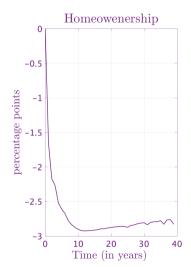
* Rent/Price
$$\rightarrow$$
 8.5% $\uparrow = \begin{cases} \text{Prices } \rightarrow \text{1.8\% } \downarrow \\ \text{Rents } \rightarrow \text{6.7\% } \uparrow \end{cases}$ Homeownership rate \rightarrow 2.82pp \downarrow

What households cannot buy?

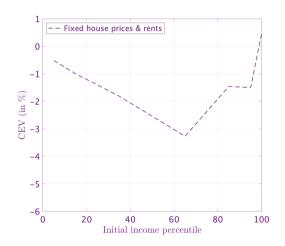
Steady State Comparison


- Second, we decompose the effect of each limit by solving for a third equilibria
 - * Only LTI economy $ightarrow \lambda_{LTI}^{\it post} = 3.5, \lambda_{LTV}^{\it pre} = 100\%$

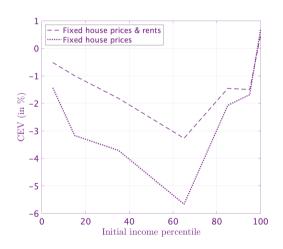

	Pre-Reform	Post-Reform	Only LTI
Rent-to-Price	3.62%	3.93%	3.94%
Average house price to income	4.70	4.63	4.62
Rent to Income	0.17	0.182	0.182
Homeownership rate	79.39%	76.57%	76.49%
Share of households with 3 properties	3.94%	4.63%	4.72%
Share of houses in hands of 3-property landlords	38.23%	39.61%	40.13%


* Most of the effects are originated by the tighter LTI limit

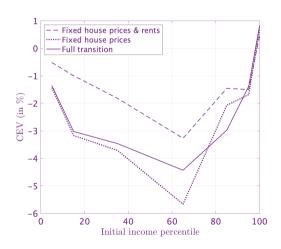
Transition paths



Lifetime CEV: fixed house prices & rents



Lifetime CEV: movements in rents

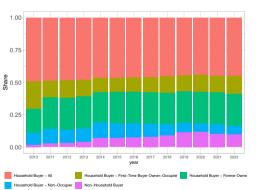


Lifetime CEV: full transition

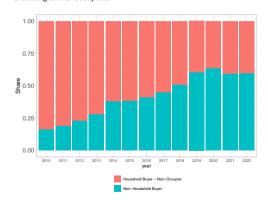
CONCLUDING REMARKS

Main Takeaways

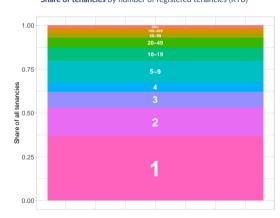
- We have **empirically** shown that the Irish macroprudential reform had **opposite effects on house prices and rents**.
- We build a GE model with landlord heterogeneity that is able to rationalize this finding.
- We use it to evaluate the **aggregate** and **distributional** effects of the reform:
 - * rent/price \uparrow 8.5% \rightarrow house prices \downarrow 1.8% & rents \uparrow 6.7%
 - * homeownership \downarrow 2.8 pp & market concentration \uparrow 1.4 pp
 - * \odot Young, middle-income and renters \rightarrow postpone/cancel buying decisions + higher rents
 - * \odot Middle-aged, top-earners, landlords \rightarrow not constrained, higher returns at lower costs



THANK YOU!

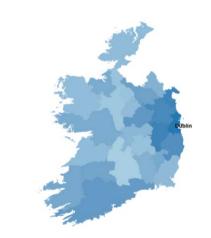

Who is the marginal investor?

Share of all property transactions, by type of buyer and year (CSO data), **excluding owner-occupiers**.


Why we only model small landlords?

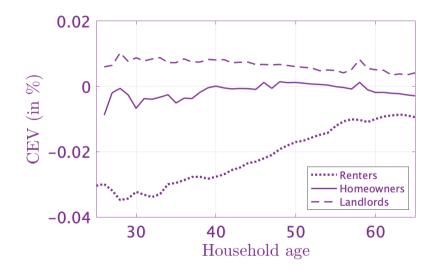
Share of tenancies by number of registered tenancies (RTB)

Mortgage Measures Framework Review


- Relaxation of the rules were announced in October 2022
- These measures will come into effect in January 2023
- First-Time-Buyers (FTB)
 - * The LTI limit increases from 3.5 to 4 times household's income
 - * No changes in the LTV limit
- Second and Subsequent Buyers (SSB)
 - * The LTV limit increases from 80% to 90%
 - * No changes in the LTI limit
- The proportion of lending above limits applies at the level of borrower type
 - * 15% of FTB and SSB can be above limit
 - * 10% of BTL lending can be above limit

Data Sources

- Data on **house prices and rents** obtained from **daft.ie** property website (Lyons, 2022)
 - * 54 housing markets (26 counties + cities + all postcodes in Dublin)
- **Distance measure** computed at borrower level (Acharya et al., 2022)
 - Look at households who obtain a mortgage in year 2014
 - * Compute the distance of their mortgage from the new limits
 - * Group over 26 counties and over the income distribution
 - * Take averages



Note: darker means less distance from limits

Lifetime CEV: the role of housing tenure

