# The aggregate and distributional implications of credit shocks on housing and rental markets

Juan Castellanos

**Andrew Hannon** 

Bank of England

European Central Bank

Gonzalo Paz-Pardo
European Central Bank

MMF Annual Conference September 8th, 2025



**Disclaimer:** The views expressed in this presentation are our own and do not necessarily reflect those of the Bank of England, its committees, the ECB nor the Eurosystem.

#### Motivation

- Housing ...
  - \* is the most important **asset** for the majority of households
  - \* represents a large share of household's **consumption** basket (non-homeowners must rent)
- After the GFC, there was an increasing focus on housing and the macroeconomy
  - \* Link between credit, house prices and the business cycle
  - \* Policy interventions related to mortgage credit
- But welfare effects on households depend also on rental markets
  - \* Credit shocks  $\rightarrow$  house prices and rents  $\rightarrow$  household's decisions and welfare



#### What we do

- Build an equilibrium model of the rental and housing markets
  - \* Heterogenous households (age, income and wealth)
  - \* Endogenous housing tenure choices (renters, homeowners or landlords)
  - \* Long-term mortgages with constraints that only occasionally bind at origination
- Use the model to study the effects of credit shocks on:
  - \* House prices and rents
  - \* Homeownership rates
  - \* Welfare
- Two experiments:
  - \* The 2015 macro-prudential intervention in Ireland
  - \* A permanent rise in the real interest rate

#### What we find: tighter LTV & LTI limits

#### - Empirically:

```
* LTV & LTI limits \implies \begin{cases} \downarrow \text{ house price growth (Acharya et al., 2022)} \\ \uparrow \text{ growth of rental prices} \end{cases}
```

#### - Model mechanisms:

- \* Increased rental demand by constrained households
- \* More rental properties need to be supplied: higher rental rates (key: landlord heterogeneity)
- \* Lower house prices over the transition, persistently if rental  $\neq$  owner-occupied properties

#### - Implications:

- \* Along the transition, the reform benefits the old and hurts the young
- \* Largest welfare losses for middle of income distribution
- \* Drivers of welfare loss: credit constraint + increase in rents
- \* Increase in wealth concentration

#### What we find: rising the real interest rate

- **Similar model mechanisms** that also lead to an increase in rental prices and a reduction of the average house price and the homeownership rate
- However, there are some interesting differences
  - \* Shock affects not only new buyers, but *current mortgagors* (increase in mortgage payments) and savers (increase in the return on savings)
  - \* Households react more by buying smaller houses and getting smaller mortgages
    - $\uparrow \mathit{r}^{\mathit{b}} \implies$  more downsizing  $\implies$  bigger reaction of the average house price
  - \* Because the rise in the return on savings, financial assets are comparatively more attractive for potential landlords
    - $\uparrow r^s \implies$  bigger reaction of rental prices
- Overall, there are welfare gains! However, there is heterogeneity across the income distribution:
  - \* Bottom of the income distribution loses, while top benefits

# THE MODEL ECONOMY

#### **Production**

#### - Final Good Producer

- \* Linear technology:  $Y_c = A_c N$ , where  $A_c$  is a parameter and N is labor
- \* Profit maximization: wage =  $A_c$

#### - Housing Good Producer

- \* Cobb-Douglas technology:  $Y_h = A_h \bar{L}^{\alpha_L} S^{1-\alpha_L}$  where  $\{A_h, \alpha_L\}$  are parameters,  $\bar{L}$  land permits and S structures
- \* Profit maximization:  $Y_h = A_h^{1/\alpha_L} ((1 \alpha_L) p_h)^{(1 \alpha_L)/\alpha_L} \bar{L}$  (housing investment function)
- \* Housing stock is composed by houses of <u>two different qualities</u>:  $H = \tilde{h}_1 H_1^{sh} + \tilde{h}_2 H_2^{sh}$  where  $\tilde{h}_i$  denotes quality and  $H_i^{sh}$  is its share in the aggregate stock
  - Final transaction price depends on type:  $p(\tilde{h}_i)$
  - Conversion between types is costly for the firm
  - Households will need to buy and sell to adjust their stock

#### Household's problem

$$V(a,\underbrace{\{h,\tilde{h}\}}_{=s},y,j) = \max_{c,a',s'} \left\{ \frac{(c f(\tilde{h}))^{1-\gamma}}{1-\gamma} + \sigma_{\varepsilon}\varepsilon(s) + \beta \mathbb{E} V(a',s',y',j+1) \right\}$$
s.t.
(1)

$$c + a' + p(\tilde{h}')h' + \mathbb{1}_{sell}\tau^h p(\tilde{h})h + \mathbb{1}_{buy}\tau^h p(\tilde{h}')h' + \delta^h p(\tilde{h})h \le$$

$$y + (1 + r(1 + \mathbb{1}_{a' < 0}\kappa))a + p(\tilde{h})h + p_r(h - 1)$$

$$(2)$$

$$a' \ge \begin{cases} \max\left\{-\lambda_{LTV} p(\tilde{h}') h', -\lambda_{LTI} y\right\} & \text{if } h' > h\\ a(1 + r(1 + \kappa) - m(j)) & \text{if } h > 0 \text{ and } a < 0\\ 0 & \text{otherwise} \end{cases}$$
(3)

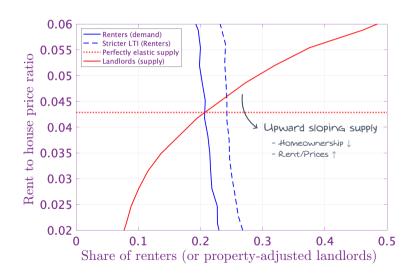
$$\varepsilon(s) \sim {\it F}$$
, extreme value type I dtb (4)

$$m(j) = \frac{r(1+\kappa)(1+r(1+\kappa))^{J-j}}{(1+r(1+\kappa))^{J-j}-1}$$
(5)

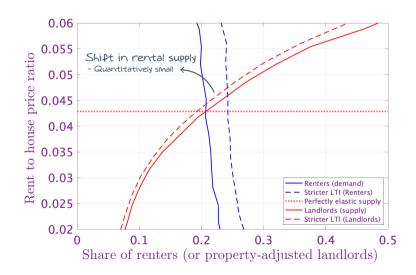


## Market clearing & equilibrium

- r is fixed → small open economy
- Housing market
  - \* houses bought = houses produced + houses sold depreciation
- Rental market
  - \* Competitive: renters meet landlords
  - \*  $p_r$  is determined using household's equilibrium distribution,  $\mathcal{D}(a, s, y, j)$


$$\sum_{j=1}^{J} \int \int \mathcal{D}(a, s_1, y, j) da dy = \sum_{j=1}^{J} \int \int \mathcal{D}(a, s_4, y, j) da dy + 2 \sum_{j=1}^{J} \int \int \mathcal{D}(a, s_5, y, j) da dy$$
renters
$$= \underbrace{\sum_{j=1}^{J} \int \int \mathcal{D}(a, s_4, y, j) da dy}_{\text{landlords w/ 1 btl property}} + 2 \underbrace{\sum_{j=1}^{J} \int \int \mathcal{D}(a, s_5, y, j) da dy}_{\text{landlords w/ 2 btl properties}}$$




# MODEL'S INTUITION

(CONSTRAINING CREDIT)

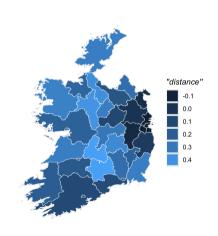
## Model intuition: landlord heterogeneity



#### Model intuition: mostly unconstrained landlords



# THE IRISH MACROPRUDENTIAL REFORM


#### Institutional framework

- First discussed in October 2014
- Officially announced and directly implemented in February 2015
- Loan-to-Value (LTV) requirements:
  - \* General limit: 80%
  - \* For first time buyers (FTB): 90% if property value is below €220,000
  - \* For buy-to-let (BTL): 70%
  - \* 15% of new lending can be above limit
- Loan-to-Income (LTI) requirements:
  - \* 3.5 times household income (only for FTB)
  - \* 20% of bank lending can be above limit

# EMPIRICAL EVIDENCE

## Intended effect on house prices

- Acharya, Bergant, Crosignani, Eisert, McCann (2022) study the effect of the reform on house prices
- What do they do?
  - \* Use data on newly originated mortgages before the reform
  - \* Construct a Distance measure that captures the exposure to lending limits (LTI & LTV) across counties and the income distribution
  - \* Regress house price changes on the Distance measure
  - \* Main finding: house prices increased more in more distant counties



#### What about rents?

- We replicate Acharya et al. (2020) empirical strategy using also data on rents:

$$\Delta HP_i = \beta_0 + \beta_1 \text{Distance}_i + \epsilon_i \tag{6}$$

$$\Delta HR_i = \gamma_0 + \gamma_1 \text{Distance}_i + \nu_i \tag{7}$$

where i is county,  $\Delta$  is change between 2014Q3 and 2016Q4

|          | $\Delta$ House prices | △ Rents |
|----------|-----------------------|---------|
| Distance | 0.289                 | -0.171  |
|          | (0.068)               | (0.039) |
| Obs.     | 52                    | 52      |
| $R^2$    | 0.34                  | 0.31    |

# AGGREGATE & DISTRIBUTIONAL EFFECTS

(STEADY STATES, TRANSITION & WELFARE)



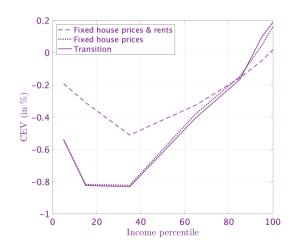
#### Long-term aggregate effects

|                                       | Pre-Reform          | Post-Reform          |
|---------------------------------------|---------------------|----------------------|
|                                       | LTV = 100%, LTI = 6 | LTV = 80%, LTI = 3.5 |
| Rent-to-Price                         | 3.98 %              | 4.09 %               |
| Average house price to income         | 4.930               | 4.925                |
| Rent to Income                        | 0.196               | 0.201                |
| Homeownership rate                    | 79.42 %             | 77.59 %              |
| Share of HHs living in big house      | 50.41 %             | 50.03 %              |
| Share of households with 3 properties | 4.29 %              | 4.51 %               |

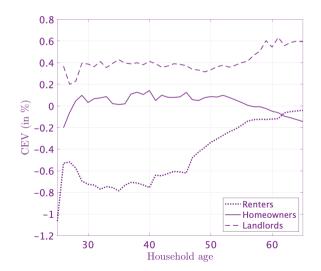
- Rent/Price 
$$\rightarrow$$
 2.82%  $\uparrow = \begin{cases} \text{Prices } \rightarrow 0.01\% \downarrow \\ \text{Rents } \rightarrow 2.73\% \uparrow \end{cases}$ 

- Homeownership rate  $\rightarrow$  1.83pp  $\downarrow$
- Share of HHs living in big  $\rightarrow$  0.38pp  $\downarrow$

- Increased rental demand is met by owners starting the landlord business (1.39pp) rather than by landlords purchasing extra units  $(0.22 \times 2 = 0.44pp)$ 


► LTV vs. LTI experiments ► Housing Tenure Flows

## Transition dynamics: short-term effects




## Welfare: Consumption Equivalent Variation

- Tighter LTV & LTI limits affects potential (constrained) homebuyers in the middle of the income distribution
- Increase in rental prices hurts those at the bottom: more likely to be renters, harder to save for downpayment
- Limited role for house prices

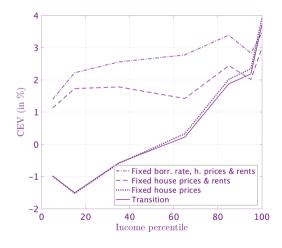


## Heterogenous effects: the housing tenure status



- Renters are the biggest losers: harder to access homeownership + they pay higher rental prices
- Homeowners are indifferent
- Landlords benefit: higher cash flows from their housing portfolio

# RISING THE REAL INTEREST RATE


## Long-term effects of a 1pp increase in r

- Similarly to before: harder to access credit (mortgages)
- Unlike before: higher rate of return on financial assets
  - \* Substitution effect: financial assets more attractive than houses
  - \* Income effect: cheaper to save for downpayment
- Implications:
  - \* Homeownership drops (0.92 p.p.)
  - \* Large increase in rents (12.7 %)
  - \* Sizable drop in house prices (-1.62 %)
- These effects would have been larger without macro-prudential policies



## Welfare: Consumption Equivalent Variation

- The increase in the return on savings is welfare improving and gains are (monotonically) increasing on income
- The higher borrowing rates negatively impact welfare. Losses are larger for those at the middle of the income distribution (potential home-buyers)
- Adjustments in the rental market (higher rents) lead to winners (top half) and losers (bottom half) from the overall increase in real rates
- Limited role for house prices



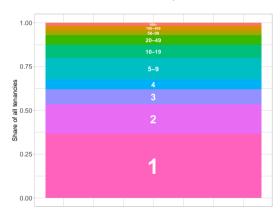
# **CONCLUDING REMARKS**

- Empirically, the Irish LTV/LTI reform had opposite effects on house prices and rents

- Empirically, the Irish LTV/LTI reform had opposite effects on house prices and rents
- We build an **equilibrium model with landlord heterogeneity** to evaluate the <u>aggregate</u> and <u>distributional</u> effects of the reform:
  - \* across steady states: homeownership  $\downarrow$  1.83 pp, rents  $\uparrow$  2.73%, house prices  $\downarrow$  0.01%
  - \*  $\odot$  poor and middle income  $\rightarrow$  higher rents + postpone/cancel buying
  - \*  $\odot$  top-earners  $\rightarrow$  not constrained, higher returns at lower costs

- Empirically, the Irish LTV/LTI reform had opposite effects on house prices and rents
- We build an **equilibrium model with landlord heterogeneity** to evaluate the <u>aggregate</u> and <u>distributional</u> effects of the reform:
  - \* across steady states: homeownership  $\downarrow$  1.83 pp, rents  $\uparrow$  2.73%, house prices  $\downarrow$  0.01%
  - \*  $\odot$  poor and middle income  $\rightarrow$  higher rents + postpone/cancel buying
  - \*  $\odot$  top-earners  $\rightarrow$  not constrained, higher returns at lower costs
- Real rate increase: similar distributional implications despite average welfare gains

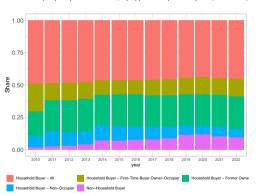
- Empirically, the Irish LTV/LTI reform had opposite effects on house prices and rents
- We build an **equilibrium model with landlord heterogeneity** to evaluate the <u>aggregate</u> and <u>distributional</u> effects of the reform:
  - \* across steady states: homeownership  $\downarrow$  1.83 pp, rents  $\uparrow$  2.73%, house prices  $\downarrow$  0.01%
  - $^*$   $\odot$  poor and middle income o higher rents + postpone/cancel buying
  - \*  $\odot$  top-earners  $\rightarrow$  not constrained, higher returns at lower costs
- Real rate increase: similar distributional implications despite average welfare gains


## THANK YOU!

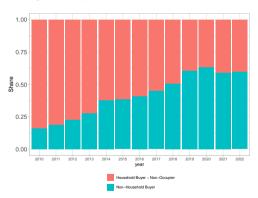
# **APPENDIX**

## Why we only model small landlords?




#### Share of tenancies owned by landlords






## Who is the marginal investor?





Share of all property transactions, by type of buyer and year (CSO data), excluding owner-occupiers.





# THE IRISH MACRO-PRUDENTIAL FRAMEWORK

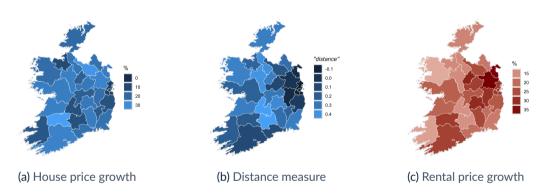
#### Mortgage Measures Framework Review

- Relaxation of the rules were announced in October 2022
- These measures will come into effect in January 2023
- First-Time-Buyers (FTB)
  - \* The LTI limit increases from 3.5 to 4 times household's income
  - \* No changes in the LTV limit
- Second and Subsequent Buyers (SSB)
  - \* The LTV limit increases from 80% to 90%
  - \* No changes in the LTI limit
- The proportion of lending above limits applies at the level of borrower type
  - \* 15% of FTB and SSB can be above limit
  - \* 10% of BTL lending can be above limit



## Cyclical evolution of house prices and rents in Ireland






#### **Data Sources**

- Data on house prices and rents obtained from daft.ie property website (Lyons, 2022)
  - \* 54 housing markets (26 counties + cities + all postcodes in Dublin)
- Distance measure computed at borrower level (Acharya et al., 2022)
  - Look at households who obtain a mortgage in year 2014
  - \* Compute the distance of their mortgage from the new limits
  - \* Group over 26 counties and over the income distribution
  - \* Take averages

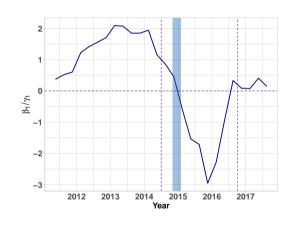


### Non-parametric evidence



- Counties where borrowers are close to the borrowing limits (low distance), e.g. around Dublin, experience *lower house price growth* (positive correlation) and *higher rental growth* (negative correlation).




#### Robustness: Pre-Trends?

- Run placebo regressions (6) (7) using 9-quarter rolling windows to compute growth rates
- Plot ratio of regression coefficients

\* 
$$\beta_1/\gamma_1 > 0 \implies cov(\Delta HP, \Delta HR) > 0$$

\* 
$$\beta_1/\gamma_1 < 0 \implies cov(\Delta HP, \Delta HR) < 0$$

- Sign changes around the reform . . .
  - \* Rents do not longer co-move with house prices as a result of the credit shock





# THE MODEL ECONOMY

#### Households: environment

- Life cycle model
  - \* Working age from  $j=1,\cdots,J^{ret}\to \text{supply labor inelastically and receive idiosyncratic income}$
  - \* Retirement age from  $j = J^{ret} + 1, \dots, J \rightarrow$  receive fix fraction of their last period income
  - \* After age  $J \rightarrow$  they die with certainty
- Preferences

$$u(c, \tilde{h}) = \frac{\left(c f(\tilde{h}_i)\right)^{1-\gamma}}{1-\gamma}$$
 where  $f'(\cdot) > 0, f''(\cdot) < 0$ 

- Assets and liabilities
  - \* Financial assets  $\rightarrow r$
  - \* Real estate  $\rightarrow p_r/p(\tilde{h})$
  - \* Mortgages  $\rightarrow r(1 + \kappa)$



#### Households: housing & mortgages

- Housing state: quantity and quality of housing  $s:=\{h,\tilde{h}\}\in\mathcal{H}, \dim(\mathcal{H})=5$ 
  - \* Renter: doesn't own (h = 0), lives in a small rented house  $\{\tilde{h}_1\}$ , and pays rent  $p_r$
  - \* Homeowner: owns (h = 1) and lives in a house of either quality  $\{\tilde{h}_1, \tilde{h}_2\}$
  - \* <u>Landlord</u>: owns multiple houses  $(1 < h \le 3)$ , lives in the best quality  $\{\tilde{h}_2\}$  and rents the remaining low quality  $\{\tilde{h}_1\}$  at a rate  $p_r$  each
- Houses are **illiquid** (proportional transaction costs,  $\tau_h$ ) and **costly to maintain**,  $\delta_h$
- Mortgages (a < 0) are limited by two **financial constraints** that can only bind at origination:

$$a' \ge -\lambda_{LTV} p_h(\tilde{h}') h'$$
  
 $a' \ge -\lambda_{LTI} y$ 

- Households must at least **pay interests** and **amortize** a minimum amount per period for the remaining life of the mortgage



#### **Equilibrium Definition**

#### **Definition 1: Competitive Equilibrium**

For a given risk free rate r, a competitive equilibrium in this economy consists of: (i) a value function, a housing choice probability, and a consumption and asset policy function for the **households**:  $\{V, \mathbb{P}(s), c, a'\}$ , (ii) a **stationary distribution** over households' state:  $\{\mathcal{D}\}$ , (iii) policy functions for the **firms**:  $\{N, L, S\}$ , and (iv) **prices**:  $\{w, p_L, p_h, p_r\}$  such that they jointly solve the household, final-good firm and construction firm problems, as well as satisfy the following **market clearing** conditions:

$$\sum_{j=1}^{J} \int \int \mathcal{D}(a, s_1, y, j) da dy = \sum_{j=1}^{J} \int \int \mathcal{D}(a, s_4, y, j) da dy + 2 \sum_{j=1}^{J} \int \int \mathcal{D}(a, s_5, y, j) da dy$$
 (8)

$$Y_h = \left(\delta_h + \frac{1}{J}\right)H\tag{9}$$

$$Y_c = C + S \tag{10}$$

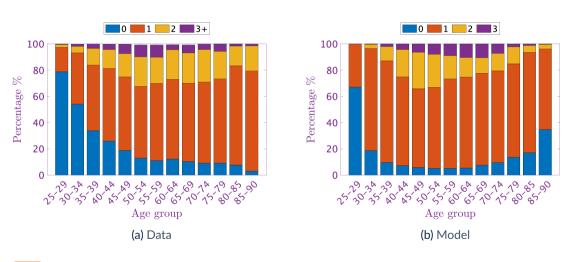


# MODEL CALIBRATION

### Externally calibrated parameters

| Parameter                      | Interpretation                              | Value           |  |
|--------------------------------|---------------------------------------------|-----------------|--|
| <b>J</b> ret                   | Working life (years)                        | 41              |  |
| J                              | Length of life (years)                      | 71              |  |
| $\gamma$                       | Risk aversion coefficient                   | 2.0             |  |
| $\sigma_{arepsilon}$           | Taste shock scale parameter                 | 0.05            |  |
| $\{\tilde{h}_1, \tilde{h}_2\}$ | Housing qualities                           | {0.905, 1.1095} |  |
| $\alpha^h$                     | Curvature in utility premium function       | 0.5             |  |
| $\delta^h$                     | Housing depreciation rate                   | 0.012           |  |
| $	au^h$                        | Proportional transaction cost               | 0.03            |  |
| $\lambda_{LTV}$                | Maximum Ioan-to-value ratio                 | 1.0             |  |
| $\lambda_{LTI}$                | Maximum Ioan-to-income ratio                | 6.0             |  |
| $r_s$                          | Risk-free rate                              | 0.02            |  |
| $r_b$                          | Mortgage rate                               | 0.04            |  |
| $A_c$                          | Aggregate labor productivity                | 1.2055          |  |
| L                              | Amount of buildable land                    | 1.0             |  |
| $\alpha_L$                     | Share of land in production                 | 0.33            |  |
| $\xi$                          | Adjustment cost scale in housing production | 0.16            |  |




### Internally calibrated parameters, targets & model fit

- The discount factor  $\beta=0.9656$ , the ownership utility premium  $f(\tilde{h}_1)=1.3378$ , and the scaling factor in housing production  $A_h=0.121$  are jointly chosen to match four moments of the data:

| Moment                                 | Model  | Data   | Source         |
|----------------------------------------|--------|--------|----------------|
| Targeted:                              |        |        |                |
| Wealth to income ratio                 | 5.89   | 6.78   | HFCS           |
| Homeownership rate                     | 79.42% | 80%    | <b>EU-SILC</b> |
| Avg. house price to income ratio       | 4.93   | 5.0    | CSO            |
| House price to rents ratio             | 22.73  | 22.58  | RTB/CSO        |
| Untargeted:                            |        |        |                |
| Rents to avg. income ratio             | 0.196  | 0.2216 | RTB/CSO        |
| Share of households with 3+ properties | 4.29%  | 5.11%  | HFCS           |

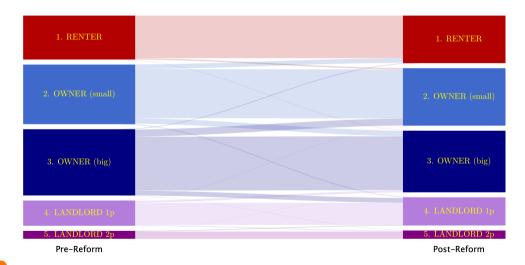


#### Life-cycle patterns: number of properties





# TIGHTER LTV & LTI LIMITS


#### Isolating the effects of each limit

|                                                      | Full-Reform | Only LTI   | Only LTV   |
|------------------------------------------------------|-------------|------------|------------|
| $\Delta\%$ Rent-to-Price $\Delta$ Homeownership rate | +2.82 %     | +1.71 %    | +0.73 %    |
|                                                      | -1.83 p.p   | -1.13 p.p. | -0.53 p.p. |

- Non-linear interactions between the two borrowing constraints amplify the response of the rent to price ratio
  - \* Similar to the constraint switching effect of Greenwald (2018)
- LTI constraint is the most impactful if imposed in isolation



### Housing tenure flows





## A RISE IN THE REAL INTEREST RATE

#### Decomposing effects from savings and mortgage rates

|                                   | Low Int. Rate            | Decomposition            | High Int. Rate           |  |
|-----------------------------------|--------------------------|--------------------------|--------------------------|--|
|                                   | $r^s = 0.02, r^b = 0.04$ | $r^s = 0.03, r^b = 0.04$ | $r^s = 0.03, r^b = 0.05$ |  |
| Rent-to-Price                     | 4.09 %                   | 4.58 %                   | 4.69 %                   |  |
| Average house price to income     | 4.925                    | 4.899                    | 4.846                    |  |
| Rent to Income                    | 0.201                    | 0.224                    | 0.227                    |  |
| Homeownership rate                | 77.59 %                  | 76.99 %                  | 76.67 %                  |  |
| Share of HHs living in big houses | 50.03 %                  | 47.74 %                  | 43.02 %                  |  |

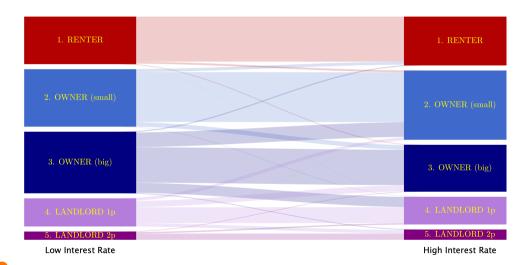
- $\uparrow r^s$  has large portfolio effects on landlords, substitute away from housing
  - \* SE > IE  $\rightarrow$  homowership  $\downarrow$  0.6p.p.,  $p_r \uparrow 11.38\%$ ,  $p_h^{avg} \downarrow 0.50\%$
- $\uparrow r^b$  generates a large downsizing effect, choose smaller mortgages
  - \* homowership  $\downarrow 0.33p.p.$ ,  $p_r \uparrow 1.22\%$ ,  $p_h^{avg} \downarrow 1.1\%$



#### Long-term effects with loose credit conditions

- Macro-prudential policies help cushion the effects of other shocks
- Larger fall in the home-ownership rate and the average house price
- Similar rise in the rental price

|                               | <b>Loose Credit Conditions</b> |                              |                              | <b>Tight Credit Conditions</b> |            |                              |
|-------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------|------------|------------------------------|
|                               | Higher r                       | Higher <i>r</i> <sup>b</sup> | Higher <i>r</i> <sup>s</sup> | Higher r                       | Higher rb  | Higher <i>r</i> <sup>s</sup> |
| Average house price to income | -1.93 %                        | -0.93 %                      | -1.01 %                      | -1.62 %                        | -1.1 %     | -0.5 %                       |
| Rent to Income                | 12.84 %                        | 1.13 %                       | 11.57 %                      | 12.70 %                        | 1.22 %     | 11.38%                       |
| Homeownership rate            | -1.07 p.p                      | -0.58 p.p.                   | -0.49 p.p.                   | -0.92 p.p.                     | -0.33 p.p. | -0.6 p.p.                    |




#### Transition dynamics: short-term effects





### Housing tenure flows



