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- Consider an AR(1) process of the form

Zt = pZt—1 + €t (1)

with stationary distribution A/(0, ¢2) where ¢, = ——
-

- Goal: obtain a finite state Markov chain that generates the same population moments
as the continuous process

- Why useful?
* Solving Bellman equations typically involves taking expectations over next period values

* If process is continuous, then one has to deal with integrals which are computationally
costly

* |If discrete, the continuation value is just a weighted sum
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What is a Markov chain? n EU| e

- Let X be a finite set with nelements : {x,..., Xn}
* Think of X as the exogenous state space and x; as the state values

- A Markov chain on X is a sequence of random variables { X;} that satisfy for any date t and any
next period state X € X

P(Xpr1 = X|Xt) = P(Xer1 = X|Xe, Xem1, Xe_o, ... 2)
* In words, knowing the current state is enough to form expectations about future states.

* This is the so called Markov property
- The dynamics of a Markov chain are fully determined by the set of probability values
P(x, %) :=P(Xps1 =X| X =x) (x,X€X) (3)
* P(x,X) > 0'is the probability of going from x to X in one step
)i

" Px,

is the conditional distribution of X;, 1 given X; = x
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How to simulate a Markov chain? n EUl e

- Assume that you have a stochastic matrix P, that is a n x n matrix such that
* Each element of P is non-negative

* Each row of P sums to one

- Then, you can generate a Markov chain { X;} as follows:
* Set a initial value or draw it from a know distribution. Call it xg.
* Since you know Xp, you can draw X; using the P(X;| Xy = Xp)

* Thus, in general you can draw X;, 1 using P(X;, ) forallt =0,1,...

- Let’s see an example using the following stochastic matrix
% 1—«
P:.= (4)
e

* You can think of 1 — & as the probability of finding a job conditional on being unemployed and
1 — B as the probability of losing a job conditional on being employed.
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Tauchen’s Method

1. Choose a value for the persistence p € (0, 1) and the standard deviation ¢, > 0

2. Set values for the hyper-parameters
* n: number of potential realization of the process

* m: number of standard deviations away from the the unconditional mean

* Typical values : n={5,7,9,11,15}, m = {2,3,4}

3. Set the bounds for the process
(6)
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Tauchen’s Method n EUl:=r

4. Set {z}? , such that:

Zi—;+n71(l—1) (7)
and construct mid-points {2},’.7;11 which are given by:
~ Ziv1t+ 2Z;
Zi = 71_‘_12 ! (8)

5. The transition probability p; € P, » (the probability of going to state z; conditional on being in state z) is
computed according to

o Zi—pZi\ - (F-1—pZ . B
pj =@ (7@: ) 0] (7% ) j=23, ..., n—1 (9)
21 — 0Z;
pir = @ (%) (10)
Pin=1- (72”*1 ’PZ") (11)
O¢

where @(-) denotes a CDF of the A/(0, 1)
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Transition probabilites: some details nEUIIUNN;Tv,;gs;;Y

- Expression (9) is obtained as follows

* Let d = zx, 1 — z be the distance between two points in the vector of state values.
* Then,
pij=Pr{Z =z|z=2z}
=Pr{zi—d/2<Z <z+d/2|z=2z}
:Pr{Zj—d/2<pZ,+£§Zj+d/2}
:Pr{zj+d/2—pz,-<g<zj—d/2—pz,-} (12)

O¢ O O

_® <zj+d/2—pz,-) _q)<zj—d/2—pz,->

O O¢
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An example: going to the computer! nEU|.“N“s'¥.$Ei'?

- Assume that we have a stochastic process

y; = 0.85y;_1 +¢ with A(0,0.0095%) (13)
- We want to approximate it with a Markov chain with 5 and 9 points. We set m = 3.

- How does the approximation depend on number of potential realizations of the process?
* We simulate the Markov chain for T = 10,000 periods
* Are the sample moments close to the population ones?

* What about the persistence of the process?

fly oy o
n=5 142e-5 0012 0.881
n=9 -0.0001 0.010 0.851
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Rouwenhorst’s Method

1. Choose a value for the persistence p € (0, 1) and the standard deviation ¢, > 0

2. Set values for the hyper-parameters
* n: number of potential realization of the process

* A : controls the upper and lower bound of the process
* Typical value for A = v/n— 10

3. Set the bounds for the process as follows
zZ=A (14)
zZ=—-A (15)
4. Set {z}7_, such that:
272 (16)
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Rouwenhorst’s Method n EUl:=r

5. When n = 2, let P, be given by

=1y 157 (17)

* pand gcanbe settop=q= 3~
6. For n > 2, construct recursively the transition matrix:

Pnzp[Pgﬁ g}m—p) {8 Pg71}+q[,3‘:1 8]+<1—q> [O P” (18)

where 0isa (n— 1) x 1 column vector of zeros.

7. Divide all elements in the middle rows (except top and bottom) by 2 so the sum of
each row is equal to 1. The final outcome is P, .
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An example: n =3 nEU|

- Let n = 3 and P, be given by equation (17). Then,

p 1—-p O 0 p 1—p
Py=p|1-q q O0O|+(1-p)|0 1-qg g
0 0 0 0 0 0
(19)
0 0 0 0 0 0
+q| p 1-p O|+(1-q) |0 p 1-p
1-g q O 0 1-g ¢
- After multiplying and re-arranging terms we obtain
p? 2p(1-p)  (1-p)?
Py = 1 1-p (20)
(

p
1-q9)g ¢+(1-9?2 (1-9)q

Second row sums up to 2! Not consistent with definition of stochastic matrix ...

That is why we divide by 2.
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Approximations to highly persistent processes n EUl o=

- Kopecky and Suen (2010, RES) show that the Rouwenhorst method is superior when
the process is highly persistent

- Assume we have stochastic process

Xt = 0.975x,_1 +¢€ with A(0,0.0072) (21)

- Discretize the process using both methods, simulate using T = 10,000 and compute
some moments

Tauchen Rouwenhorst

~ A~ PN A

fly oy p Hy Oy Y
n=5 0.0009 0.0042 0.9969 -0.001 0.0069 0.9753
n=9 -0.0013 0.0076 0.9778 0.0003 0.0071 0.9763
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Beyond AR(1) processes n EUl o

- Tauchen method can be extended to VAR(1) processes
* ARMA(p,q) can be written as VAR(1)

* VAR(p) can also be written as VAR(1)
- What if the process is not stationary?

* Typically the case of the income process in quantitative life-cycle models
* Fella, Galliponi and Pan (2019, Rev. Econ. Dyn.)
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