Discretization Methods

Juan Castellanos

European University Institute

April 3, 2023

- Consider an AR(1) process of the form

$$z_t = \rho z_{t-1} + \varepsilon_t \tag{1}$$

with stationary distribution $\mathcal{N}(0, \sigma_z^2)$ where $\sigma_z = \frac{\sigma_{\varepsilon}}{\sqrt{1-\rho^2}}$

- **Goal**: obtain a finite state Markov chain that generates the same population moments as the continuous process
- Why useful?
 - * Solving Bellman equations typically involves taking expectations over next period values
 - * If process is continuous, then one has to deal with integrals which are computationally costly
 - * If discrete, the continuation value is just a weighted sum

- Let *X* be a finite set with *n* elements : $\{x_1, \ldots, x_n\}$
 - * Think of *X* as the *exogenous* state space and *x_i* as the state values
- A Markov chain on X is a sequence of random variables {X_t} that satisfy for any date t and any next period state x̃ ∈ X

$$\mathbb{P}(X_{t+1} = \tilde{x} | X_t) = \mathbb{P}(X_{t+1} = \tilde{x} | X_t, X_{t-1}, X_{t-2}, \ldots)$$
(2)

- * In words, knowing the current state is enough to form expectations about future states.
- * This is the so called Markov property
- The dynamics of a Markov chain are fully determined by the set of probability values

$$P(x,\tilde{x}) := \mathbb{P}(X_{t+1} = \tilde{x} | X_t = x) \quad (x,\tilde{x} \in X)$$
(3)

- * $P(x, \tilde{x}) \ge 0$ is the probability of going from x to \tilde{x} in one step
- * $P(x, \cdot)$ is the conditional distribution of X_{t+1} given $X_t = x$

- Assume that you have a stochastic matrix P, that is a $n \times n$ matrix such that
 - * Each element of *P* is non-negative
 - * Each row of *P* sums to one
- Then, you can generate a Markov chain $\{X_t\}$ as follows:
 - * Set a initial value or draw it from a know distribution. Call it x_0 .
 - * Since you know x_0 , you can draw X_1 using the $\mathbb{P}(X_1|X_0 = x_0)$
 - * Thus, in general you can draw X_{t+1} using $P(X_t, \cdot)$ for all t = 0, 1, ...
- Let's see an example using the following stochastic matrix

$$\boldsymbol{P} := \begin{bmatrix} \alpha & 1-\alpha \\ 1-\beta & \beta \end{bmatrix}$$
(4)

* You can think of $1 - \alpha$ as the probability of finding a job conditional on being unemployed and $1 - \beta$ as the probability of losing a job conditional on being employed.

1. Choose a value for the persistence $ho \in (0, 1)$ and the standard deviation $\sigma_z > 0$

- 2. Set values for the hyper-parameters
 - * *n* : number of potential realization of the process
 - * *m* : number of standard deviations away from the the unconditional mean
 - * Typical values : n= $\{5, 7, 9, 11, 15\}, m = \{2, 3, 4\}$
- 3. Set the bounds for the process

$$\bar{z} = m\sigma_z$$
(5)
 $z = -m\sigma_z$
(6)

Tauchen's Method

4. Set $\{z_i\}_{i=1}^n$ such that:

$$z_i = \underline{z} + \frac{\overline{z} - \underline{z}}{n-1}(i-1)$$
(7)

and construct mid-points $\{\tilde{z}\}_{i=1}^{n-1}$ which are given by:

$$\tilde{z}_i = \frac{z_{i+1} + z_i}{2} \tag{8}$$

5. The transition probability $p_{ij} \in P_{z,z'}$ (the probability of going to state z_j conditional on being in state z_i) is computed according to

$$p_{ij} = \Phi\left(\frac{\tilde{z}_j - \rho z_i}{\sigma_{\varepsilon}}\right) - \Phi\left(\frac{\tilde{z}_{j-1} - \rho z_i}{\sigma_{\varepsilon}}\right) \quad j = 2, 3, \dots, n-1$$
(9)

$$p_{i1} = \Phi\left(\frac{\tilde{z}_1 - \rho z_i}{\sigma_{\varepsilon}}\right) \tag{10}$$

$$p_{in} = 1 - \Phi\left(\frac{\widetilde{z}_{n-1} - \rho z_i}{\sigma_{\varepsilon}}\right) \tag{11}$$

where $\Phi(\cdot)$ denotes a CDF of the $\mathcal{N}(\mathbf{0},\mathbf{1})$

- Expression (9) is obtained as follows
 - * Let $d = z_{k+1} z_k$ be the distance between two points in the vector of state values.

* Then,

$$p_{i,j} = \Pr \{ z' = z_j \mid z = z_i \}$$

$$= \Pr \{ z_j - d/2 < z' \le z_j + d/2 \mid z = z_i \}$$

$$= \Pr \{ z_j - d/2 < \rho z_i + \varepsilon \le z_j + d/2 \}$$

$$= \Pr \{ \frac{z_j + d/2 - \rho z_i}{\sigma_{\varepsilon}} < \frac{\varepsilon}{\sigma_{\varepsilon}} \le \frac{z_j - d/2 - \rho z_i}{\sigma_{\varepsilon}} \}$$

$$= \Phi \left(\frac{z_j + d/2 - \rho z_i}{\sigma_{\varepsilon}} \right) - \Phi \left(\frac{z_j - d/2 - \rho z_i}{\sigma_{\varepsilon}} \right)$$
(12)

- Assume that we have a stochastic process

$$y_t = 0.85y_{t-1} + \varepsilon$$
 with $\mathcal{N}(0, 0.0095^2)$ (13)

- We want to approximate it with a Markov chain with 5 and 9 points. We set m = 3.
- How does the approximation depend on number of potential realizations of the process?
 - * We simulate the Markov chain for T = 10,000 periods
 - * Are the sample moments close to the population ones?
 - * What about the persistence of the process?

	$\hat{\mu}_{y}$	$\hat{\sigma}_{y}$	ρ	
n = 5	1.42e-5	0.012	0.881	
n = 9	-0.0001	0.010	0.851	

- 1. Choose a value for the persistence $ho\in(0,1)$ and the standard deviation $\sigma_z>0$
- 2. Set values for the hyper-parameters
 - * *n* : number of potential realization of the process
 - * λ : controls the upper and lower bound of the process
 - * Typical value for $\lambda = \sqrt{n-1} \sigma_z$
- 3. Set the bounds for the process as follows

$$\bar{z} = \lambda$$
 (14)

$$\underline{z} = -\lambda$$
 (15)

4. Set $\{z_i\}_{i=1}^n$ such that:

$$z_i = \underline{z} + \frac{\overline{z} - \underline{z}}{n-1}(i-1)$$
(16)

Rouwenhorst's Method

5. When n = 2, let P_2 be given by

$$P_2 = \begin{bmatrix} p & 1-p \\ 1-q & q \end{bmatrix}$$

* *p* and *q* can be set to $p = q = \frac{1+\rho}{2}$

6. For n > 2, construct *recursively* the transition matrix:

$$P_{n} = p \begin{bmatrix} P_{n-1} & \mathbf{0} \\ \mathbf{0}' & \mathbf{0} \end{bmatrix} + (1-p) \begin{bmatrix} \mathbf{0} & P_{n-1} \\ \mathbf{0} & \mathbf{0}' \end{bmatrix} + q \begin{bmatrix} \mathbf{0}' & \mathbf{0} \\ P_{n-1} & \mathbf{0} \end{bmatrix} + (1-q) \begin{bmatrix} \mathbf{0} & \mathbf{0}' \\ \mathbf{0} & P_{n-1} \end{bmatrix}$$
(18)

where **0** is a $(n-1) \times 1$ column vector of zeros.

7. Divide all elements in the middle rows (except top and bottom) by 2 so the sum of each row is equal to 1. The final outcome is $P_{z,z'}$

(17)

- Let n = 3 and P_2 be given by equation (17). Then,

$$P_{3} = p \begin{bmatrix} p & 1-p & 0\\ 1-q & q & 0\\ 0 & 0 & 0 \end{bmatrix} + (1-p) \begin{bmatrix} 0 & p & 1-p\\ 0 & 1-q & q\\ 0 & 0 & 0 \end{bmatrix} + q \begin{bmatrix} 0 & 0 & 0\\ p & 1-p & 0\\ 1-q & q & 0 \end{bmatrix} + (1-q) \begin{bmatrix} 0 & 0 & 0\\ 0 & p & 1-p\\ 0 & 1-q & q \end{bmatrix}$$

- After multiplying and re-arranging terms we obtain

$$P_{3} = \begin{bmatrix} p^{2} & 2p(1-p) & (1-p)^{2} \\ p & 1 & 1-p \\ (1-q)q & q^{2} + (1-q)^{2} & (1-q)q \end{bmatrix}$$
(20)

- Second row sums up to 2! Not consistent with definition of stochastic matrix ...
- That is why we divide by 2.

(19)

- Kopecky and Suen (2010, RES) show that the Rouwenhorst method is superior when the process is highly persistent
- Assume we have stochastic process

$$x_t = 0.975x_{t-1} + \epsilon$$
 with $\mathcal{N}(0, 0.007^2)$ (21)

- Discretize the process using both methods, simulate using T = 10,000 and compute some moments

	Tauchen			Rouwenhorst			
	$\hat{\mu}_{y}$	$\hat{\sigma}_y$	ρ	$\hat{\mu}_{y}$	$\hat{\sigma}_y$	ρ	
n = 5	0.0009	0.0042	0.9969	-0.001	0.0069	0.9753	
n = 9	-0.0013	0.0076	0.9778	0.0003	0.0071	0.9763	

- Tauchen method can be extended to VAR(1) processes
 - * ARMA(p,q) can be written as VAR(1)
 - * VAR(p) can also be written as VAR(1)
- What if the process is not stationary?
 - * Typically the case of the income process in quantitative life-cycle models
 - * Fella, Galliponi and Pan (2019, Rev. Econ. Dyn.)