Local Projections

Juan Castellanos

European University Institute

April 11, 2023

- Modern dynamic macro studies the propagation of structural shocks
- Impulse response functions are the fundamental object in this type of analysis
 - * Important statistics that summarize models of the economy.
 - * Thus, they can be used in an indirect inference exercise to estimate the parameters of those models
- Formally, an impulse-response function describes the evolution of the variable of interest y along a specified time horizon t + h after a shock of size d in a given moment t. That is,

$$IR(t, h, d) = \mathbb{E}(y_{t+h}|u_t = d, y_{t-1}, y_{t-2}, \ldots) - \mathbb{E}(y_{t+h}|u_t = 0, y_{t-1}, y_{t-2}, \ldots)$$
(1)

- Two fundamental questions:
 - * How do we measure the shock of interest?
 - * How do we estimate the impulse response function?

THE ECONOMETRIC MODEL

Estimation and Identification

- There are two approaches: (a) the structural vector autoregression (SVAR) and (b) the local projection (LP)
- In the SVAR *approach*, the estimation and identification problems are typically jointly solved. Key assumptions:
 - * Wold decomposition: from the reduced-from to the structural representation of the VAR

$$A(L)Y_t = u_t \implies Y_t = \Phi(L)\varepsilon_t \tag{2}$$

* Invertibility: from the reduced-form innovations to structural shocks

$$u_t = \Phi_0 \varepsilon_t$$
 and Φ_0^{-1} exists (3)

- * This implies that to identify the impulse responses, we need to identify Φ_0 . How? Cholesky, long-run restrictions, sign restrictions, etc.
- In the LP approach these two problems are typically disentangled.

An AR(1) example

- Assume we have have the following AR(1) process:

$$z_t = \rho z_{t-1} + u_t \tag{4}$$

where z_t is a scalar, $\rho \in (0, 1)$ is the persistence of the process and $u_t \sim \mathcal{N}(0, \sigma_u)$

- Wold decomposition: since the process is stationary $\rho < 1$, we can find the $MA(\infty)$ representation:

$$z_t = (1 - \rho L)^{-1} u_t$$

= $u_t + \rho u_{t-1} + \rho^2 u_{t-2} + \dots$ (5)

- We are interested in the response to structural shocks ε_t , not the responses to the reduced-from innovations u_t . That is, we are looking for $\frac{\partial z_{t+h}}{\partial \varepsilon_t}$
- **Invertibility**: structural shocks lie in the linear spaced spanned by the reduced-form innovations: $u_t = \Phi_0 \varepsilon_t$. Thus, we can write,

$$z_t = \Phi_0 \varepsilon_t + \rho \Phi_0 \varepsilon_{t-1} + \rho^2 \Phi_0 \varepsilon_{t-2} + \dots$$
(6)

- What's the response of variable z in period t + h?

$$\frac{\partial z_{t+h}}{\partial \varepsilon_t} = \rho^j \Phi_0 \quad \forall h = 0, \dots, H$$
⁽⁷⁾

Local Projections: unobserved shocks I

- Assume that the observed $n \times 1$ dimensional time series Y_t is represented by the structural VAR: $Y_t = \Phi(L)\varepsilon_t$, which for some Y_{t+h} we can re-write as follows:

$$\begin{aligned}
&\chi_{t+h} = \Phi_0 \varepsilon_{t+h} + \Phi_1 \varepsilon_{t+h-1} + \dots + \Phi_{h-1} \varepsilon_{t+1} + \Phi_h \varepsilon_t + \Phi_{h+1} \varepsilon_{t-1} + \dots \\
&= \Phi_h \varepsilon_t + \Phi_{h+1} \varepsilon_{t-1} + \dots + \xi_{t+h}^{(h)}
\end{aligned}$$
(8)

- Suppose we are interested in the impulse response associated with the first shock $\varepsilon_{1,t}$. Let $\varepsilon_{\cdot,t} = {\varepsilon_{2,t}, \ldots, \varepsilon_{n,t}}$ and $\Phi_{h,\cdot}$ be the $n \times (n-1)$ matrix that contains all columns of Φ except of the first one. Then,

$$Y_{t+h} = \Phi_{h,1}\varepsilon_{t,1} + \Phi_{h,\cdot}\varepsilon_{\cdot,t} + \Phi_{h+1}\varepsilon_{t-1} + \ldots + \xi_{t+h}^{(h)}$$
(9)

- Assume that $\varepsilon_{1,t} = u_{1,t} - \operatorname{Proj}(u_{1,t}|u_{\cdot,t})$, i.e. Φ_0 is upper triangular and we ordered $\varepsilon_{1,t}$ first. Under this restriction we can write

$$Y_{t+h} = \Phi_{h,1} (u_{1,t} - \operatorname{Proj}(u_{1,t}|u_{.t})) + \{u_{.,t-1}, u_{.,t-2}, ...\} + \xi_{t+h}^{(h)}$$

= $\Phi_{h,1}u_{1,t} + \{u_{.,t}\} + \{u_{.,t-1}, u_{.,t-2}, ...\} + \xi_{t+h}^{(h)}$ (10)
= $\Phi_{h,1}Y_{1,t} + \{Y_{.,t}, Y_{t-1}, Y_{t-2}, ...\} + \xi_{t+h}^{(h)}$

- Equation (10) is now written completely in terms of observables!
- We can identify the impulse response coefficients $\Theta_{h,1}$ by regressing Y_{t+h} on $Y_{1,t}$ at a variety of horizons, controlling for the contemporaneous effects of other variables, and the lagged values of all the observed time series.
- Note that we need to control for the contemporaneous effects because we assumed that $\varepsilon_{1,t}$ is ordered first
- How would equation (10) change if we assumed that $\varepsilon_{1,t}$ is ordered last?
 - * This is equivalent to assuming that $\varepsilon_{1,t} = u_{1,t}$
 - * Φ_0 is lower triangular
 - * Thus, there is no need to control for contemporaneous variables

$$Y_{t+h} = \Phi_{h,1} Y_{1,t} + \{ Y_{\cdot,t-1}, Y_{\cdot,t-2}, \ldots \} + \xi_{t+h}^{(h)}$$
(11)

- What if we can "observe" the shocks?
- A branch of the literature has focus on constructing measures of the shocks using the *narrative* approach
 - * Monetary policy: FFR changes around small windows of an FOMC announcement
 - * Fiscal policy: military news to estimate government spending changes (Ramey, 2011)
- If we have a measure of the shock, *x*_t, we can run the following regression to identify the impulse responses

$$\mathbf{y}_{t+h} = \mu_h + \beta_h \mathbf{x}_t + \gamma'_h \mathbf{r}_t + \sum_{\ell=1}^p \delta'_{h,\ell} \mathbf{w}_{t-\ell} + \xi_{h,t}$$
(12)

where $w_t = (r'_t, x_t, y_t, q'_t)$. Here, r_t and q_t serve as controls.

- The LP impulse response of y_t with respect to x_t is given by β_h .

- For this class, it is enough that you know how to estimate the IRFs with respect to the true shock since we will work with simulated data.
- In practice this is not the case. The shock of interest $\varepsilon_{1,t}$ is not observed and if it is measured, it typically has some error associated to it.
- A popular approach is to estimate the impulse response to the first shock using a two stage least square version of the LP.
- What we need? An instrumental variable (IV) that satisfies the following conditions:
 - * Relevance: $\mathbb{E}[\varepsilon_{1,t}Z_t] \neq 0$
 - * Contemporaneous exogeneity: $\mathbb{E}[\varepsilon_{\cdot,t}Z_t] = 0$
 - * Lead-lag exogeneity: $\mathbb{E}[\varepsilon_{t+k}Z_t] = 0 \quad \forall k = \pm 1, \pm 2, \dots$
- Advantage: no need to impose invertibility . . . however, if the lag exogeneity condition not satisfied, a sufficient condition is invertibility (no free lunch)

INDIRECT INFERENCE

Indirect inference: LP coefficients as moments

- In an indirect inference exercise we use an econometric model to summarize key features of the data
 - * Impulse response coefficients are a good candidate
 - * Does it matter how we estimate them?
- As seen above, the SVAR and LP approaches are used to estimate IRFs. How do they compare?
- Plagborg-Møller and Wolf (2020, ECTA) show that these two approaches estimate the same impulse responses! So why should we care?
 - * This is a population result
 - In finite samples, they only approximately agree up to horizon h = p, while for h > p there is a bias variance trade off
- Therefore, does the choice of econometric model used to estimate the IRFs matter for the estimates of structural parameters?
- Castellanos and Cooper (2023) show that using LP coefficients is superior to using VAR coefficients since the IRFs at the estimated parameters are closer to the true/structural IRFs.