Local Projections

Juan Castellanos

European University Institute

April 11, 2023

- Modern dynamic macro studies the propagation of structural shocks
- Impulse response functions are the fundamental object in this type of analysis
	- * Important statistics that summarize models of the economy.
	- * Thus, they can be used in an indirect inference exercise to estimate the parameters of those models
- Formally, an impulse-response function describes the evolution of the variable of interest *y* along a specified time horizon $t + h$ after a shock of size d in a given moment *t*. That is,

$$
IR(t, h, d) = \mathbb{E}(y_{t+h} | u_t = d, y_{t-1}, y_{t-2}, \dots) - \mathbb{E}(y_{t+h} | u_t = 0, y_{t-1}, y_{t-2}, \dots)
$$
(1)

- Two fundamental questions:
	- * How do we measure the shock of interest?
	- * How do we estimate the impulse response function?

THE ECONOMETRIC MODEL

- There are two approaches: (a) the structural vector autoregression (SVAR) and (b) the local projection (LP)
- In the *SVAR approach*, the estimation and identification problems are typically jointly solved. Key assumptions:
	- * **Wold decomposition**: from the reduced-from to the structural representation of the VAR

$$
A(L)Y_t = u_t \implies Y_t = \Phi(L)\varepsilon_t \tag{2}
$$

* **Invertibility**: from the reduced-form innovations to structural shocks

$$
u_t = \Phi_0 \varepsilon_t \quad \text{and} \quad \Phi_0^{-1} \text{ exists}
$$
 (3)

- * This implies that to identify the impulse responses, we need to identify Φ_0 . How? Cholesky, long-run restrictions, sign restrictions, etc.
- In the *LP approach* these two problems are typically disentangled.

An AR(1) example

- Assume we have have the following AR(1) process:

$$
z_t = \rho z_{t-1} + u_t \tag{4}
$$

where z_t is a scalar, $\rho \in (0,1)$ is the persistence of the process and $u_t \sim \mathcal{N}(0,\sigma_u)$

- Wold decomposition: since the process is stationary $\rho < 1$, we can find the $MA(\infty)$ representation:

$$
z_t = (1 - \rho L)^{-1} u_t
$$

= $u_t + \rho u_{t-1} + \rho^2 u_{t-2} + \dots$ (5)

- We are interested in the response to structural shocks ε_t , not the responses to the reduced-from i innovations u_t . That is, we are looking for $\frac{\partial z_{t+h}}{\partial \varepsilon_t}$
- **Invertibility**: structural shocks lie in the linear spaced spanned by the reduced-form innovations: $u_t = \Phi_0 \varepsilon_t$. Thus, we can write,

$$
z_t = \Phi_0 \varepsilon_t + \rho \Phi_0 \varepsilon_{t-1} + \rho^2 \Phi_0 \varepsilon_{t-2} + \dots \tag{6}
$$

- What's the response of variable z in period $t + h$?

$$
\frac{\partial z_{t+h}}{\partial \varepsilon_t} = \rho^j \Phi_0 \quad \forall h = 0, \dots, H
$$
\n(7)

- Assume that the observed $n \times 1$ dimensional time series Y_t is represented by the structural VAR: $Y_t = \Phi(L)\varepsilon_t$, which for some Y_{t+h} we can re-write as follows:

$$
Y_{t+h} = \Phi_0 \varepsilon_{t+h} + \Phi_1 \varepsilon_{t+h-1} + \dots + \Phi_{h-1} \varepsilon_{t+1} + \Phi_h \varepsilon_t + \Phi_{h+1} \varepsilon_{t-1} + \dots
$$

= $\Phi_h \varepsilon_t + \Phi_{h+1} \varepsilon_{t-1} + \dots + \xi_{t+h}^{(h)}$ (8)

- Suppose we are interested in the impulse response associated with the first shock $\varepsilon_{1,t}.$ Let $\epsilon_{\cdot,t}=\{\epsilon_{2,t},\ldots,\epsilon_{n,t}\}$ and $\Phi_{h,\cdot}$ be the $n\times(n-1)$ matrix that contains all columns of Φ except of the first one. Then,

$$
Y_{t+h} = \Phi_{h,1} \varepsilon_{t,1} + \Phi_{h,\cdot} \varepsilon_{\cdot,t} + \Phi_{h+1} \varepsilon_{t-1} + \ldots + \xi_{t+h}^{(h)}
$$
(9)

- Assume that *ε*1,*^t* = *u*1,*^t* − Proj(*u*1,*^t* |*u*·,*t*), i.e. Φ⁰ is upper triangular and we ordered *ε*1,*^t* first. Under this restriction we can write

$$
Y_{t+h} = \Phi_{h,1} (u_{1,t} - \text{Proj}(u_{1,t}|u_{.t})) + \{u_{.t-1}, u_{.t-2}, \ldots\} + \xi_{t+h}^{(h)}
$$

= $\Phi_{h,1} u_{1,t} + \{u_{.t}\} + \{u_{.t-1}, u_{.t-2}, \ldots\} + \xi_{t+h}^{(h)}$
= $\Phi_{h,1} Y_{1,t} + \{Y_{.t}, Y_{t-1}, Y_{t-2}, \ldots\} + \xi_{t+h}^{(h)}$ (10)

- Equation (10) is now written completely in terms of observables!
- We can identify the impulse response coefficients Θ*h*,¹ by regressing *Yt*+*^h* on *Y*1,*^t* at a variety of horizons, controlling for the contemporaneous effects of other variables, and the lagged values of all the observed time series.
- Note that we need to control for the contemporaneous effects because we assumed that *ε*1,*^t* is ordered first
- How would equation (10) change if we assumed that *ε*1,*^t* is ordered last?
	- * This is equivalent to assuming that ε_1 $t = u_1$,
	- $*$ Φ_0 is lower triangular
	- * Thus, there is no need to control for contemporaneous variables

$$
Y_{t+h} = \Phi_{h,1} Y_{1,t} + \{Y_{\cdot,t-1}, Y_{\cdot,t-2}, \ldots\} + \xi_{t+h}^{(h)}
$$
(11)

- What if we can "observe" the shocks?
- A branch of the literature has focus on constructing measures of the shocks using the *narrative* approach
	- * Monetary policy: FFR changes around small windows of an FOMC announcement
	- * Fiscal policy: military news to estimate government spending changes (Ramey, 2011)
- If we have a measure of the shock, x_t , we can run the following regression to identify the impulse responses

$$
y_{t+h} = \mu_h + \beta_h x_t + \gamma'_h r_t + \sum_{\ell=1}^p \delta'_{h,\ell} w_{t-\ell} + \xi_{h,t}
$$
 (12)

where $w_t = (r'_t, x_t, y_t, q'_t)$. Here, r_t and q_t serve as controls.

 \cdot The LP impulse response of y_t with respect to x_t is given by $\beta_h.$

- For this class, it is enough that you know how to estimate the IRFs with respect to the true shock since we will work with simulated data.
- In practice this is not the case. The shock of interest $\varepsilon_{1,t}$ is not observed and if it is measured, it typically has some error associated to it.
- A popular approach is to estimate the impulse response to the first shock using a two stage least square version of the LP.
- What we need? An instrumental variable (IV) that satisfies the following conditions:
	- * Relevance: $\mathbb{E}[\varepsilon_{1,t} Z_t] \neq 0$
	- * Contemporaneous exogeneity: $\mathbb{E}[\varepsilon_{\cdot,t} Z_t] = 0$
	- $*$ Lead-lag exogeneity: $\mathbb{E}[\varepsilon_{t+k} Z_t] = 0 \quad \forall k = \pm 1, \pm 2, \ldots$
- Advantage: no need to impose invertibility . . . however, if the lag exogeneity condition not satisfied, a sufficient condition is invertibility (no free lunch)

INDIRECT INFERENCE

Indirect inference: LP coefficients as moments

- In an indirect inference exercise we use an econometric model to summarize key features of the data
	- * Impulse response coefficients are a good candidate
	- * Does it matter how we estimate them?
- As seen above, the SVAR and LP approaches are used to estimate IRFs. How do they compare?
- Plagborg-Møller and Wolf (2020, ECTA) show that these two approaches estimate the same impulse responses! So why should we care?
	- * This is a population result
	- * In finite samples, they only approximately agree up to horizon $h = p$, while for $h > p$ there is a bias variance trade off
- Therefore, does the choice of econometric model used to estimate the IRFs matter for the estimates of structural parameters?
- Castellanos and Cooper (2023) show that using LP coefficients is superior to using VAR coefficients since the IRFs at the estimated parameters are closer to the true/structural IRFs.